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 Mensing arrived in Göttingen while matrix mechanics was taking shape and she took full 
 advantage of having a front row seat for these developments. She wrote two important 
 papers on the new quantum mechanics during the year following her PhD and 
 co-authored another one. She wrote the first one in Göttingen but the second and the 
 third at least partly after she had gone back home to Hamburg (where her co-author 
 Pauli was still based in 1926 although he also visited Göttingen and Copenhagen). She 
 was the first to apply the new quantum mechanics to diatomic molecules, which she had 
 already written a paper about in the context of the old quantum theory in 1923/24 in 
 Hamburg (which was only published, however, right before the one on the new quantum 
 quantum mechanics) 

 ●  “  Die Rotations-Schwingungsbanden nach der Quantenmechanik  .”  Zeitschrift für 
 Physik  36 (1926): 814–823  DOI 

 ●  With Wolfgang Pauli, “  Über die Dielektrizitätskonstante  von Dipolgasen nach der 
 Quantenmechanik  .”  Physikalische Zeitschrift  27 (1926),  509–512. 

 ●  “  Die Intensitäten der Zeemankomponenten beim partiellen 
 Paschen-Back-Effekt  .”  Zeitschrift für Physik  39 (1926):  24–28.  DOI 

 In the first paper, entitled “The rotation-vibration bands according quantum mechanics,” 
 Mensing applied the new rules for the quantization of angular momentum—first 
 published in early 1926 in the famous  Dreimännerarbeit  (Three-Man-Paper) of Born, 
 Heisenberg and Jordan (  DOI  )—to diatomic molecules  and solved a puzzle that the 
 spectrum of such molecules had posed for the old quantum theory. In the process she 
 sharpened the quantization rule: Born, Heisenberg and Jordan had shown that the 
 quantum number for angular momentum could take on integer  or half-integer  values. 
 Mensing showed that  orbital  angular momentum (as opposed  to intrinsic angular 
 momentum or spin) could only take on integer values. 
 Impressed by these results, Pauli invited her to collaborate with him on a related puzzle 
 concerning the electric susceptibility in diatomic gases. Their solution of this puzzle, in a 
 paper entitled “On the dielectric constant of dipole gases according quantum 
 mechanics,” was one of the first successes of the new quantum mechanics outside of 
 the field of spectroscopy for which the theory was originally developed. This was 
 emphasized by  John Van Vleck  who found the same result  as Mensing and Pauli, using 
 some results on angular momentum from Mensing’s earlier paper on rotation-vibration 
 bands. In an interview for the  Archive for the History  of Quantum Mechanics  , Van Vleck 
 said: “One always thinks of [quantum mechanics’] effect and successes in connection 
 with spectroscopy, but I remember Niels Bohr saying that one of the great arguments for 
 quantum mechanics was its success in these non-spectroscopic things such as 
 magnetic and electric susceptibilities.” Van Vleck was so taken with this result that it 
 figures prominently in his 1977 Nobel lecture. 



 In the third paper, entitled “The intensities of the Zeeman components in the partial 
 Paschen-Back effect,” Mensing returned to spectroscopy. The  Zeeman effect  is the 
 splitting of spectral lines when the atoms emitting light are placed in an external 
 magnetic field.  Pieter Zeeman  originally found a splitting  in three components. Hendrik 
 Antoon Lorentz could explain this on the basis of classical theory and the two of them 
 shared the 1902 Nobel Prize for this work. Soon thereafter, however, splittings in more 
 than three components were found. As this could not be explained classically, this 
 became known as the  anomalous  Zeeman effect, even  though it was more common 
 than the “normal” Zeeman effect. An important hint to its eventual explanation in 
 quantum mechanics came from the discovery by  Friedrich  Paschen  and  Ernst Back  in 
 Tübingen in 1912 that in sufficiently strong magnetic fields the splitting in just three 
 components returned. This Paschen-Back effect thus suggested that the Zeeman effect 
 was due partly to magnetic fields within the atom. Using the new concept of spin and 
 the associated magnetic moment of the electron as well as the new framework of 
 quantum mechanics, Heisenberg and Pauli were finally able to explain the Zeeman 
 effect in terms of spin-orbit coupling. Building on their paper, Mensing successfully dealt 
 with the  partial  Paschen-Back effect, i.e., the absence  in some cases of lines in normal 
 Zeeman triplets. 

 The vibration-rotation spectra of diatomic molecules 
 In both the old and the new quantum theory, diatomic molecules, like carbon monoxide 
 (CO) or hydrogen chloride (HCl), can be modeled as systems of two bodies connected 
 by a spring. The system can execute both vibrations and rotations as indicated in the 
 figure below. 

 Model of diatomic molecule 

 The spectrum of the light emitted by these molecules consists of a number of equally 
 spaced lines in the infrared on both sides of a missing central line. 



 Typical spectrum of a diatomic molecule 

 These spectral lines originate from transitions in which the molecule simultaneously 
 changes its vibrational and rotational state. The energy gap between different 
 vibrational states is much larger than the energy gap between different rotational states. 
 These transitions thus give rise to what are called rotational bands. 
 In both the old and the new quantum theory, the energy of diatomic molecules can only 
 take on discrete values, labeled by two quantum numbers,  for vibrational,  for  𝑛  𝑙 
 rotational energy: 

 ,  𝐸  𝑛 ,  𝑙 ( ) =  𝐸 
 𝑣𝑖𝑏 

 𝑛 ( ) +  𝐸 
 𝑟𝑜𝑡 

 𝑙 ( )   

 where  . The figure below shows  two sets of vibrational energy levels,  𝐸 
 𝑣𝑖𝑏 

 𝑛 ( ) ≫  𝐸 
 𝑟𝑜𝑡 

 𝑙 ( )
 labeled by  n  and  n  +1, split into many rotational energy  levels, labeled 0,1,2,3,… 



 Energy levels of a diatomic molecule plus two allowed (blue) 
 and one forbidden (red) transition between them. 

 The rotational energy is proportional to  ,  the angular momentum squared. The  𝐿  2 

 quantization rule for angular momentum in the old quantum is 

 with  𝐿    =  𝑙     ℎ 
 2 π  𝑙 =  1 ,  2 ,  3 ,  … 

 where  is Planck’s constant. So, according to the  old quantum theory, the possible  ℎ 
 values of the rotational energy are 

 with  𝐸 
 𝑟𝑜𝑡 

 𝑙 ( ) =  𝐶  𝑙  2  𝑙 =  1 ,  2 ,  3 ,  … 

 where  is some combination of  ,  , the masses  of the two molecules and the distance  𝐶  ℎ π
 between them. For our purposes, we can treat it as a constant. 
 Only transitions in which  decreases by 1 and  increases or decreases by 1 are     𝑛  𝑙 
 allowed. Schematically: 

 𝑛 +  1 ,     𝑙 ( ) →  𝑛 ,     𝑙 ±  1 ( )

 The Bohr frequency condition says that the energy difference between initial and final 
 state is equal to Planck’s constant times the frequency  of the light emitted in the ν

 𝑙 → 𝑙 ± 1 
 transition: 



 ℎ ν
 𝑙 → 𝑙 ± 1 

=  𝐸  𝑛 +  1 ,  𝑙 ( )   −     𝐸  𝑛 ,  𝑙 ±  1 ( )   

 . =  𝐸 
 𝑣𝑖𝑏 

 𝑛 +  1 ( ) −  𝐸 
 𝑣𝑖𝑏 

 𝑛 ( ) +  𝐸 
 𝑟𝑜𝑡 

 𝑙 ( ) −  𝐸 
 𝑟𝑜𝑡 

 𝑙 ±  1 ( )   

 The difference in vibrational energy gives the frequency of the missing central line, 
 which corresponds to the forbidden transition  . The difference in rotational energy  𝑙 →  𝑙 
 gives the shift in frequency of the lines on both sides of this missing line: 

 ,  𝐶𝑙  2 −  𝐶  𝑙 +  1 ( ) 2    =    −  2  𝐶𝑙    −  𝐶    

 .  𝐶𝑙  2 −  𝐶  𝑙 −  1 ( ) 2    =     2  𝐶𝑙    +  𝐶    

 The old quantum theory thus predicts that the spectrum is symmetric around the 
 missing line. In fact, it is shifted a little to the left. As physicists realized at the time, a 
 better fit with the data is obtained if half-integer quantum numbers are used for angular 
 momentum, i.e., if the expressions for  and  are replaced by:  𝐿  𝐸 

 𝑟𝑜𝑡 

 ,  .  𝐿    =  𝑙 +  1 
 2 ( )    ℎ 

 2 π  𝐸 
 𝑟𝑜𝑡 

 𝑙 ( ) =  𝐶  𝑙 +  1 
 2 ( ) 2 

 In that case the frequency shifts are given by: 

 ,  𝐶  𝑙 +  1 
 2 ( ) 2 

−  𝐶  𝑙 +  3 
 2 ( ) 2 

   =    −  2  𝐶𝑙    −  2  𝐶    

 .  𝐶  𝑙 +  1 
 2 ( ) 2 

−  𝐶  𝑙 −  1 
 2 ( ) 2 

   =     2  𝐶𝑙    

 So the entire spectrum is shifted  to the left,  which is in better agreement with the  𝐶  /  ℎ 
 data. Unfortunately, it was completely unclear where these half-integer quantum 
 numbers were coming from. 
 Mensing provided a simple solution to this puzzle in the course of treating the problem 
 with the new quantum mechanics. The new rule for the quantization of angular 
 momentum is 

 𝐿  2    =  𝑙  𝑙 +  1 ( )  ℎ  2 

 4 π 2  𝑙 =  0 ,  1 ,  2 ,  … 

 So the rotation energy becomes 

 .  𝐸 
 𝑟𝑜𝑡 

 𝑙 ( ) =  𝐶𝑙  𝑙 +  1 ( )

 We now have 
 ,  𝐸 

 𝑟𝑜𝑡 
 𝑙 ( ) −  𝐸 

 𝑟𝑜𝑡 
 𝑙 ±  1 ( ) =  𝐶𝑙 ( 𝑙 +  1 ) −  𝐶  𝑙 ±  1 ( )( 𝑙 ±  1 +  1 )   

 which works out to: 
 ,  𝐶𝑙 ( 𝑙 +  1 ) −  𝐶  𝑙 +  1 ( )  𝑙 +  2 ( )   =    −  2  𝐶𝑙    −  2  𝐶    

 .  𝐶𝑙 ( 𝑙 +  1 ) −  𝐶  𝑙 −  1 ( ) 𝑙    =     2  𝑙𝐶 



 This is the same result found with half-integer quantum numbers in the old quantum. 
 This is not surprising given that 

 𝑙  𝑙 +  1 ( ) =  𝑙 +  1 
 2 ( ) 2 

−  1 
 4 

 (the term  does not matter since only energy  differences matter in the end). Mensing  1 
 4 

 thus explained why half-integer quantum numbers had worked better in the old quantum 
 theory. 

 The electric susceptibility of diatomic gases 
 The electric susceptibility of a gas is a measure of how the gas responds to an external 
 electric field (similarly for magnetic susceptibility). Consider a gas of diatomic molecules 
 such as HCl. Such molecules will have a permanent electric dipole moment, with the 
 hydrogen atom the positive and the chlorine atom the negative pole. When such 
 molecules are placed in an electric field, their dipole moments will try to align with the 
 field. In addition, the field will move the positive and negative poles a little further apart. 
 The electric susceptibility  of a gas of diatomic  molecules is a combination of these two χ
 effects. It is described by a formula proposed by  Peter Debye  in 1912, modeled on a 
 similar formula proposed by  Paul Langevin  for magnetic  susceptibility (where only the 
 alignment effect plays a role). The formula for  thus became known as the χ
 Debye-Langevin formula: 

 , χ =     𝑁 α + µ 2 

 3  𝑘𝑇 ( )
 where  is the number of molecules,  is a constant,  is the permanent electric  𝑁 α µ   
 moment of individual molecules,  is Boltzmann’s  constant, and  is the temperature.  𝑘  𝑇 

 For our purposes, only the alignment effect, captured by the second term in the 
 Debye-Langevin formula, is important. The alignment is frustrated by the thermal motion 
 of the molecules. This is why this second term has the temperature in its denominator: 
 the higher the temperature, the smaller the alignment effect. Put differently: the greater 
 the energy of the molecules, the smaller the alignment effect. In fact, in classical theory 
 only the lowest energy states contribute to  . χ

 The second term of the Langevin-Debye formula can be written as 

 . χ =     𝐶  𝑁 µ 2 

 𝑘𝑇 

 Classical theory correctly predicted that  . The old quantum theory predicted a  𝐶 =  1 
 3 

 much larger value. Using integer quantum numbers, Mensing’s mentor  Wolfgang Pauli 
 found  when he did the calculation in 1921,  almost five times the classical  𝐶 =  1 .  54 
 value. Unlike the situation with the spectrum of these diatomic molecules, half-integer 
 quantum numbers only made matters worse. When  Linus  Pauling  redid Pauli’s 
 calculation a few years later with half-integer quantum numbers, he found  ,  𝐶 =  4 .  57 



 almost 14 times the classical value! This is the problem Pauli hoped Mensing could help 
 him solve in the new quantum mechanics. 
 The root of this problem for the old quantum theory, as with the problem of the spectrum 
 of diatomic molecules, was the rule for the quantization of angular momentum. The 
 calculation of the contribution of the alignment effect to the electric susceptibility 
 proceeds in two steps, taking two different averages. First, one has to take the  time 
 average  of the component of a molecule’s dipole moment  in the direction of the electric 
 field. Then one has to take an  ensemble average  , i.e.,  one has to average the time 
 average of individual molecules over all molecules in the gas, assuming a normal 
 (Boltzmann) distribution of these molecules over all states they could be in. 
 If one does this calculation in classical mechanics  for all but the lowest energy states  , 
 the time average gives an expression of the form 

 ,  𝐴  𝐿 ( )  3  𝐿 
 𝑧 
 2  /  𝐿  2 ( ) −  1 ( )

 where  is the length of the molecule’s angular  momentum vector,  is the  𝐿  𝐿 
 𝑧 

 𝑧 
 -component of that vector,  is some combination  of quantities which depend on  ,  𝐴  𝐿 ( )  𝐿 
 and the overbar indicates the time averaging mentioned above. If we average this time 
 average over all molecules, using a double bar for this ensemble averaging, we get 

 ,  𝐿 
 𝑧 
 2  /  𝐿  2 ( ) =  1 

 3 

 since  and the  -  - and  -directions will be represented equally  𝐿  2 =  𝐿 
 𝑥 
 2 +  𝐿 

 𝑦 
 2 +  𝐿 

 𝑧 
 2  𝑥  𝑦  𝑧 

 among the molecules in the gas. It follows that the contribution to the alignment effect 
 coming from the bulk of the molecules’ energy states vanishes. The only contribution 
 comes from the lowest energy states, as one would expect, and it could be shown that 
 this contribution is of just the right amount, with  .  𝐶 =  1 

 3 

 Both in the old and in the new quantum theory, one arrives at expressions for the time 
 average of the component of a molecule’s dipole moment in the direction of the electric 
 field by using the quantization rules for angular momentum. In the old quantum theory, 
 these rules are  (with  ) and  (with  ) and  𝐿 =  𝑙  ℎ 

 2 π  𝑙 =  1 ,  2 ,  3 ,  …  𝐿 
 𝑧 

=  𝑚  ℎ 
 2 π  𝑚 =−  𝑙 ,    ...,  0 ,  1 ,...,  𝑙 

 the time average becomes: 

 .  𝐴  𝐿 ( )  3  𝑚  2 

 𝑙  2 −  1 ( )
 In the new quantum theory, the first of these quantization rules gets replaced by 

 (with  )  and the time average becomes  𝐿  2    =  𝑙  𝑙 +  1 ( )  ℎ  2 

 4 π 2  𝑙 =  0 ,  1 ,  2 ,  3 ,  … 

 .  𝐴  𝐿 ( )  3  𝑚  2 

 𝑙  𝑙 + 1 ( ) −  1 ( )



 To find the contribution to the alignment effect, we need to average these expressions 
 over all possible states, i.e., over all possible values of the quantum numbers  and  𝑙  𝑚 
 labeling these states. To get the empirically correct answer, it had better be the case 
 that only the lowest energy state contributes and that the contributions of all other states 
 sum to zero. 
 In the old quantum theory, this is not the case. Since the value  is ruled out, the  𝑙 =  0 
 lowest energy state is forbidden and thus does not contribute to the alignment effect at 
 all. In that sense, as Pauli pointed out when he did the calculation in 1921, it was 
 fortunate that the higher energy states contributed. Unfortunately, their contribution was 
 almost five times too large. And with half-integer quantum numbers it was almost 
 fourteen times too large! As  Van Vleck  said in his  AHQP interview  , the old quantum 
 theory produced some “wonderful nonsense” on this score. 
 Mensing and Pauli took care of this “nonsense” in their 1926 paper. First of all, the value 

 is no longer ruled out and they showed that  this state accounts for the full  𝑙 =  0 
 alignment effect, restoring the constant  to its  classical value of  . Furthermore, they  𝐶  1 

 3 
 showed that the contributions coming from all other states are zero! This follows 
 immediately from the well-known sum of squares formula. Customized to the situation at 
 hand, this formula says that 

 𝑚 =− 𝑙 

 𝑙 

∑  𝑚  2 =  2 
 𝑚 = 1 

 𝑙 

∑  𝑚  2 =  1 
 3  𝑙  𝑙 +  1 ( )  2  𝑙 +  1 ( ).

 We can use this formula to compute the average of the time average over all possible 
 values of  for a given value of  , the two quantum  numbers labeling the allowed states  𝑚  𝑙 
 of the system. This average, it turns out, vanishes for all values of  :  𝑙 ≠  0 

 .  1 
 2  𝑙 + 1 

 𝑚 =− 𝑙 

 𝑙 

∑  3  𝑚  2 

 𝑙  𝑙 + 1 ( ) −  1 ( ) =  1 
 2  𝑙 + 1 

 3 
 𝑚 =− 𝑙 

 𝑙 

∑  𝑚  2 

 𝑙  𝑙 + 1 ( ) −  2  𝑙 +  1 ( )⎛

⎝

⎞

⎠

=  0    

 As Mensing and Pauli, with obvious relief, note in an italicized the clause in their paper: 
 “  Only the molecules in the lowest state will therefore  give a contribution to the 
 temperature-dependent part of the dielectric constant  .” 


