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ABSTRACT
In this work, the essence of Non-
Newtonian Fluid Mechanics and 
Computational Rheology is presented 
through three examples applied to the 
rheological characterisation of polymeric 
solutions using the SwanINNFM(q) 
family-of-!uids (1-5), and of worm-like 
micellar solutions using the BMP + _τp 
rheological equation-of-state (6-8), within 
the computational modelling of two 
benchmark flows in Non-Newtonian 
Fluid Mechanics: contraction-expansion 
!ow geometries and !ow past a sphere. 
The predictive capabilities of our compu-
tational tools are demonstrated, where 
mathematical models derived from 
conservation principles are solved (9-11) 
alongside the construction of constitu-
tive equations from theoretical rheology 
(1-11). These mathematical models are 
solved using a computational algorithm 
based on a hybrid formulation of spa-
tial discretisation in the form of "nite 
elements for the mass and momentum 
balance equations, and "nite volumes 
for the constitutive equation (1-8, 12-15). 
In contraction-expansion type bench-
mark !ows, "rstly for polymeric !uids, 
experimental pressure-drop measure-
ments were reproduced quantitatively 
using the SwanINNFM family-of-!uids 
(1-5). We were able, for the "rst time, 
to predict quantitatively and explain 
long-standing augmented excess pres-
sure-drops and highly-dynamic vortex 
structures observed in the !ow of poly-
meric Boger !uids (16-21). Building upon 
contraction-expansion !ows of thixo-
viscoelastoplastic concentrated worm-
like micellar solutions, the effects of 

considering extreme shear thinning and 
!ow segregation through yield stress 
and shear banding were demonstrated 
(6-8, 22). Using the BMP + _τp constitu-
tive model (8), shear bands are predicted 
in fully-developed !ow zones away from 
the constriction, and their interaction 
with the complex deformation imposed 
by the contraction is reported. For the 
!ow-past-sphere benchmark !ow (7), 
numerical solutions obtained with the 
BMP + _τp model qualitatively reproduce 
features reported experimentally for the 
descent of spheres in worm-like micellar 
solutions, i.e., a !ow instability associated 
with oscillations in the sphere settling 
velocity and negative wakes (22), and, 
for relatively concentrated micellar solu-
tions, asymmetrical yield fronts.

INTRODUCTION
One of the fundamental contribu-

tions of rheology is the identi"cation of 
diverse materials as Newtonian (those 
that follow Newton’s Law of Viscosity, 
i.e., those which display a constant vis-
cosity at constant temperature and pres-
sure), and as non-Newtonian, i.e., those 
that do not comply with the Newtonian 
de"nition. The latter manifest non-linear 
!ow properties through a variable appar-
ent viscosity with deformation rate, time 
of an imposed !ow, and even displaying 
simultaneous liquid and solid properties 
in the form of viscoelasticity and yield 
stress, to name a few typical rheological 
responses (9-11).

In its practice, rheology divides its 
study into four main areas (9-11): (i) rhe-
ometry, which spans over material-prop-
erty measurement, e.g., fundamentally 

viscosity, elastic modulus, relaxation 
time; (ii) constitutive modelling, through 
which constitutive equations seek to 
reproduce and explain the material prop-
erties of complex !uids; (iii) non-Newto-
nian !uid mechanics, which studies the 
!ow of non-Newtonian materials in com-
plex geometries, whose essence lies in 
inhomogeneous deformations (deforma-
tions that combine shear and extension 
simultaneously in the !ow "eld) and are 
re!ected in physical arrangements with 
diverse geometric changes observed in 
nature and in technological applications, 
such as contractions and expansions, and 
!ows around objects, among others; and 
(iv) computational rheology, which focuses 
its efforts in obtaining approximate 
numerical solutions to the !ows studied 
in non-Newtonian !uid mechanics.

Complex !uids are materials with non-
linear rheological characteristics derived 
from their microstructure, which may be 
classi"ed as soft matter (9-11). Complex 
!uids are found in countless techno-
logical applications, e.g., cements, paints, 
toothpaste, foams, crude oil and its heavy 
fractions, drilling muds in oil extraction, 
foodstuff, mayonnaise, plastics, reactive 
mixtures, and cosmetics (9-11, 22-31). In 
addition, many biological !uids, such as 
blood, mucus, saliva and tissues, may 
display non-linear rheological properties 
(32-36).

The combination of: (i) the non-linear 
rheological properties of complex !uids, 
(ii) the conservation equations, i.e. of 
mass, momentum and thermal energy, 
and (iii) the simultaneous non-homoge-
neous shear and extensional deforma-
tions imposed in complex !ows, result 
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in mathematical problems of the highest 
complexity when attempting to describe, 
understand, and theoretically predict 
the experimental manifestations in non-
Newtonian Fluid Mechanics (37-40). 
The interest of Computational Rheology is 
the prediction of complex !ows of non-
Newtonian materials. It bases its action 
on the development and application of 
advanced numerical techniques to the 
highly non-linear partial-differential-
equation systems that represent !ow 
problems whose solution is practically 
unattainable by exact methods (37-40).

There is a plethora of numerical algo-
rithms for solving computational rheol-
ogy problems (37-41). In general, their 
formulation has as a basis on Eulerian or 
Lagrangian frames of reference. The most 
popular Eulerian algorithms are based 
on finite-element and finite-volume 
methods (6-8, 37-40), devised to cover 
the mixed parabolic-hyperbolic nature 
of the mass-momentum-energy bal-
ance and constitutive equations. On the 
side of Lagrangian algorithms, particle 
dynamics methods (Smoothed Particle 
Hydrodynamics, Dissipative Particle 
Dynamics and lubrication dynamics 
methods), are among the most widely 
used (41), and represent a suitable option 
for the computational prediction of the 
rheology of suspensions and particulate 
systems (42).

Polymeric materials (melts and solu-
tions) are made up of long-chain mol-
ecules, which interact closely through 
entanglement and reptation in molten 
and dissolved states. These interactions 
are the origin of their characteristic 
non-Newtonian features, in the form of 
marked shear thinning, and viscoelas-
ticity through signi"cantly-augmented 
normal-stress differences (10-11). The 
re!ection of such rheological response in 
complex deformations has been a matter 
of extensive research (16-21). Studies on 
many benchmark !ows have focused on 
their kinematic and dynamic response, 
for which augmented pressure drops 
and diverse vortex-enhancement mecha-
nisms occupy a central role (16-21). In fact, 
the theoretical prediction and under-
standing of such features remain an open 
research topic to date, where efforts are 
still being concentrated in elucidating 
how polymeric materials respond under 
inhomogeneous deformations (1-6).

Wormlike micellar solutions (WLMs) 
are complex !uids composed of disper-
sions of elongated micelles that interact 

essentially through relatively weak entan-
glements; these physical interactions 
promote their thixotropic, viscoelastic 
and plastic properties (22, 25-31). WLMs 
are also known as living polymers, due to 
their ability to restructure when !owing 
by two mechanisms, i.e., (i) reptation, as 
polymers do, and (ii) construction and 
destruction of micellar structures (22, 
25-31). For these reasons and their var-
ied rheological properties, these complex 
thixo-viscoelastoplastic materials are 
used in a wide range of applications, such 
as in cleaning and home and health-care 
products (shampoos, soaps, detergents, 
drug carriers); in the petroleum industry, 
as drilling and well-stimulation !uids; in 
pumping systems, lubricants and emulsi-
"ers (22, 25-31).

The diversity of rheological proper-
ties of polymers and WLMs is a chal-
lenge for the development of constitutive 
equations capable of describing their 
experimental manifestations in simple 
and complex !ows (37-40). Polymers and 
WLMs generally display shear thinning, 
extensional hardening and softening, 
viscoelasticity, thixotropy (16-21, 22, 
25-31) and, in the speci"c case of WLMs, 
!ow segregation in the form of yield 
stress (27) and banding (35). All of these 
responses occur simultaneously and 
manifest across diverse spatial-temporal 
scales (22, 25-31, 35).

Constitutive equations for polymeric 
materials are diverse and numerous, 
some coming from microscopic argu-
ments and others based on continuum 
approaches (11). Among the most widely-
used constitutive-equation approaches 
of differential nature are those of the 
FENE type, where the Peterlin and the 
Chilcott-Rallison closures dominate (11, 
43-44), and the Phan-Thien-Tanner para-
digm (45), which have been successful in 
reproducing and explaining the response 
of a wide range of polymer melts and 
solutions.

For WLMs, constitutive equations 
are still being developed (6-8, 22, 46-50). 
There are two main theoretical frame-
works, namely, (i) theories based on 
structural variables, and (ii) microscopic 
theories. The former are the most popular, 
as they portray the evolution of the inter-
nal WLM structure, explicitly related to 
material functions (6-8, 46, 48-49). Among 
these models are those in the Bautista-
Manero-Puig (BMP) (6-8) and de Souza-
Mendes (48-49) families. The constitutive 
equations in the BMP framework predict 

key properties of WLMs and other com-
plex !uids, and have been successfully 
used to study the !ow of WLMs in com-
plex deformations (6-8). Microscopic 
theories study the interaction of micelles 
in their construction/destruction dynam-
ics in !ow, via kinetic equations whose 
solution is related to material properties 
through averages (47, 50).

Experimental studies on the !ow of 
polymeric !uids and WLMs in complex 
geometries reveal rich features, with 
dynamic vortex-enhancement mecha-
nisms and pressure drops. These act as 
alternative energy-dissipation mecha-
nisms in contraction !ows, and through 
drag coefficients in sphere settling, 
revealing instabilities manifested in par-
ticle oscillations and negative wakes (16-
22, 51).

In benchmark contraction and con-
traction-expansion !ows, complex vortex 
dynamics have been recorded experi-
mentally. At low volumetric !ow rates, 
symmetric kinematic structures are 
observed, similar to those observed in 
the contraction !ow of Newtonian !uids. 
At high volumetric !ow rate, asymmet-
ric vortices, promoted by viscoelasticity, 
lead to time-dependent chaotic !ows (16-
22, 51).

In the sedimentation of smooth 
spheres in semi-dilute WLMs, oscilla-
tions in the particle descent velocity 
have been reported. These are caused by 
strong negative wakes behind the sphere; 
for polymeric liquids, a similar response 
is recorded as velocity overshoots (16-21, 
51). These phenomena have been stud-
ied as !ow instabilities with respect to 
the steady rate of descent characteris-
tic of Newtonian !uids (22). In WLMs, 
these "ndings have been attributed to 
the complex dynamics of structure con-
struction-destruction of the elongated 
micelles (leading to thixotropy) and the 
viscoelasticity of the micellar solution 
(6-8, 22). For concentrated mixtures, these 
thixo-viscoelastoplastic solutions form 
gels that display markedly-asymmetric 
yield fronts around the sphere (22, 51), as 
previously reported by Holenberg et al. 
(52) and Putz et al. (53).

One of the iconic manifestations of 
WLMs is a type of !ow segregation called 
shear-banding, which is characterised by 
a spontaneous separation of the solution 
into two or more shear bands of material 
that coexist, supporting a constant shear 
stress, but with distinct apparent viscos-
ity (8, 22, 35).
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This paper presents a compendium of 
research work conducted by the author 
on computational predictions of the 
response of polymeric and WLM solutions 
in complex benchmark !ows (1-8). These 
works illustrate the use of computational 
rheology in the numerical solution of two 
typical problems of non-Newtonian !uid 
mechanics: !ows past a sphere (7), and 
!ows through contractions and contrac-
tion-expansions (6,8). These benchmark 
!ows have industrial and technological 
applicability; (i) !ow around spheres is 
applied in particle suspension in medi-
cine and the food industry (shelf life), and 
is also an approximation for clay trans-
port in enhanced oil extraction !uids (37-
40); whilst (ii) contraction-expansion !ow 
is found in industrial equipment with 
pipe and "tting changes (37-40), and lies 
at the heart of polymer and food process-
ing operations (22, 54).

BALANCE AND CONSTITUTIVE 
EQUATIONS
The general statement of the problem of 
non-Newtonian !ow in complex geom-
etries, i.e., generalised !ow systems with 
changes in shape and cross section, is 
based on the fundamental conservation 
equations and appropriate constitutive 
equations accounting for the rheological 
response of the materials considered. For 
incompressible, isothermal, non-New-
tonian !ow, the mass and momentum 
balance equations in dimensionless form 
are:

∇⋅ =u 0,  (1)

Re t p∂
∂ + ⋅∇
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟=−∇ +∇⋅u u u T ,

 
(2)

where u represents the velocity, p is the 
isotropic pressure, t  symbolises time 
and ∇ is the gradient operator, which 
acts upon the three dimensions of space. 
The Reynolds number Re UL= ρ

η0
 char-

acterises the !ow regime through the 
ratio of inertial forces experienced by 
the moving material against dissipative 
viscous forces. Here, ρ represents the 
material density, η η η0 0= +p s  is a char-
acteristic viscosity, given by the level of 
the "rst Newtonian plateau in the !ow 
curve (Fig. 1a), which is de"ned as the 
sum of the viscous contributions of the 
Newtonian solvent ηs  and non-Newto-
nian solute ηp0  at vanishing deformation 
rates, if the !uid is conceived as a solu-
tion. U  and L  represent, respectively, 

characteristic velocity and length scales. 
Here, the characteristic velocity U  is asso-
ciated with the volumetric !ow rate for 
!ow around a sphere (Fig. 2a) and for a 
pressure-driven contraction !ow (Fig. 2b);  
in contrast, U  is associated with the 
velocity of the sliding wall of the contrac-
tion-expansion geometry in the modi"ed 
Couette !ow of Fig. 2c. Complementarily, 
the characteristic length L  is related to the 
geometry considered: in the case of con-
traction-type !ows, it is associated with 
the diameter of the constriction smallest 
gap, and, in the case of !ow past a sphere, 
it is related to the particle diameter.

In non-Newtonian !uid mechanics, 
it is convenient to consider the !uids as 
solutions with solute and solvent com-
ponents. This is a concept known as 
Elastic-Viscous Stress-Splitting (EVSS) 
(10-11), where the solvent is speci"ed as 
Newtonian and the solute carries the 

non-Newtonian characteristics of the 
solution. This approach allows for a broad 
applicability of rheological concepts to 
the characterisation of many types of 
materials with diverse non-Newtonian 
characteristics, such as polymer solutions 
(16-21), bio!uids (32-36), metallic alloys 
(55), among many others. Thus, within 
the framework of the EVSS, the total 
stress tensor T  is divided into two con-
tributions: (i) the Newtonian solvent con-
tribution, i.e., τ s s= = −2 2 10η η βD D( ) ; 
and (ii) the contribution of the non-New-
tonian solute τ p , for which a rheological 
equation-of-state must be speci"ed and 
provides the nonlinear characteristics of 
the solution. Here, D u u= ∇ + ∇⎡⎣ ⎤⎦

1
2 ( )T  

is the rate-of-deformation tensor, which 
collects the symmetric shear and normal 
deformation rates that a !uid element can 
experience in a three-dimensional space. 
Furthermore, in the diffusive term on the 

FIGURE 1.  a) and b) BMP + _τp model material functions in steady simple shear and uniax-
ial extension; rheological responses for three #uids with apparently Null Hardening (NH; 
{ω,ξG0} = {4,1}), moderate (MH; {ω,ξG0} = {4,0.1125}) and severe (SH; {ω,ξG0} = {0.28,0.1125}) 
features; β = 1/9 - comparison against Exponential Phan-Thien-Tanner (EPTT) and Vasquez-
Cook-McKinley (VCM) models. c) and d) SwanINNFM(q) swIM model extensional viscos-
ity and $rst normal-stress di%erence in shear. Reprinted from Journal of Non-Newtonian 
Fluid Mechanics, Vol. 309, J. Esteban López-Aguilar, Osvaldo Resendiz-Tolentino, Hamid 
R. Tamaddon-Jahromi, Marco Ellero, Octavio Manero, Flow past a sphere: Numerical pre-
dictions of thixo-viscoelastoplastic wormlike micellar solutions, 104902 1-22, Copyright 
(2022), and from Journal of Non-Newtonian Fluid Mechanics, Vol. 273, Michael F. Webster, 
Hamid R. Tamaddon-Jahromi, J. Esteban López-Aguilar, David M. Binding, Enhanced pres-
sure drop, planar contraction #ows and continuous spectrum models, 104184, Copyright 
(2019), with the permission of Elsevier.
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RHS of the solvent stress equation, the 
solvent fraction β η

η η
η
η= =+

s

p s

s

0 0
 de"nes 

a dimensionless viscosity by comparing 
the viscosity of the solvent ηs  against the 
total viscosity of the solution at vanish-
ing deformation rates η η η0 0= +p s . The 
domain of this dimensionless viscosity 
is 0 1< ≤β ; here, β = 1 characterises 
a !uid with pure Newtonian character-
istics and viscosity η0 , whilst, comple-
mentarily, the β → 0  limit de"nes the 
response of an extremely concentrated 
system with non-Newtonian features. 
Thus, the solvent fraction β  serves as a 
measure of the viscous solute-to-solvent 
contributions to the total stress T .

To specify the rheological response of 
the non-Newtonian solute, whose stress 
is represented by τ p , and focusing on 
WLMs, this work considers the BMP 
theoretical framework in its most recent 
variant: the BMP + _τp model (6-8). This 
rheological equation-of-state predicts the 
essential rheological response of WLMs 
(25-31). For this purpose, the solute stress 
obeys a generalised Oldroyd-B-type dif-
ferential form:

f Dep
p

τ τ+ = −( )
∇

2 1 β D,
 

(3)

where the Deborah number De U
L= λ1  

modulates the viscoelastic properties of 
the solution through the relaxation time 
of the material λ η

1
0

0
= p

G , which is de"ned 
by the ratio of the solute viscosity ηp0  and 
the elastic modulus G0 , both measured 
at low deformation rates. The viscoelas-
tic response of the solute resides in the 
upper-convected derivative of the stress: 

τ τ τ ττ∇ ∂
∂= + ⋅∇ − ∇ ⋅ − ⋅∇p t p

T
p p

p u u u( ) .

  (4)

Its "rst term accounts for the varia-
tion of stress over time at a "xed point, 
the second term considers the temporal 
variation of stress due to motion, and the 
last two terms close the de"nition with 
the contribution given by the deforma-
tion of the material per se.

Finally, the "rst term on the LHS of 
Eq. (3) considers a material internal-
structure functional f p

p
=

η
η

0 , which, for 
models in the BMP formalism, is de"ned 
through a measure of the dimensionless 
solute !uidity. This internal-structure 
functional f  obeys a temporal evolu-
tion through the following kinetic equa-
tion of !uid-structure construction and 
destruction (6-8):

∂
∂ + ⋅∇ = −( )
+ −( )

f
t f f

De fG p

u

D

1 1

0

ω
ξ ξ τ : .

 

(5)

The LHS of Eq. (5) measures the spatial-
temporal evolution of the dimensionless 
!uidity, whilst its RHS contains kinetic 
terms that measure the rates of internal-
structure construction and destruction 
of the micellar solution, respectively, and 
which are re!ected in the change of the 
!uidity of the material. Here, the dimen-
sionless time ω λ= s

U
L  modulates the 

rate of formation of internal structure of 
the micellar solution. Complementarily, 
ξ ξ η ηη η

η δG p s
U
Lk G kp s

0
0

00 0 0= = ++
+∞

and ( )  are 
dimensionless stresses associated with 
the destruction of the internal structure 
of the material; here, k0  is the inverse of 
the characteristic stress required to break 
the internal structure between the elon-
gated micelles in suspension, and η δ∞ +  
is the viscosity of the solute at high defor-
mation rates. The mechanism of structure 
destruction is promoted by the magni-
tude of the energy dissipated by the sol-
ute per unit volume τ p : D  under !ow. 
Furthermore, to include the formation of 
banded !ows, the structure-destruction 
coef"cient must take a linear functional-
ity with respect to the rate-of-deforma-
tion tensor (8), i.e., k k II( )D D= +[ ]0 1 ϑ , 
where ϑ is the shear-banding intensity 
parameter, and IID D D= 1

2 :  is the sec-
ond invariant of the rate-of-deformation 
tensor.

Eq. (5) stands for the latest model-
variant in the BMP family, i.e., BMP + _τp 
model, which considers the coupling 
of thixotropy and viscoelasticity in 
the evolution of the material structure. 
Additionally, it provides a non-linear 
evolution of the "rst normal-stress dif-
ference in steady simple shear, and an 
extensional viscosity response with 
hardening and softening, all in line 
with "ngerprints of typical WLMs (see  
Fig. 1a-b).

For polymeric solutions, the base con-
stitutive equation approach used is that 
under the SwanINNFM(q) umbrella (1-5), 
which is constructed within a FENE-CR 
framework, and supplemented with a 
White-Metzner functionality on the vis-
cous coef"cient. Here, the conformation-
tensor A-form of the base SwanINNFM(q) 
model is:

f tr DeA A I A( ) −( )+ =
∇

0. (6)

The FENE-CR structure functional is 
de"ned as:

f tr tr
L

A A( ) =
−

1

1 2

,

 
(7)

where L2  is the "nite extensibility param-
eter. The Kramers rule translates the con-
formation tensor and the stress tensor 
signals as follows:

τ β
p e f tr= − ( ) −( )1

D A A I .
 (8)

Finally, the implementation of 
the dissipative extensional-function 
φ ε ε( ) ( ) = +1 2λD  serves to devise an 
extensional viscosity boosting mecha-
nism via an extension-dissipative times-
cale λD  modulating the in!uence of the 
relevant extensional rate-of-deformation 
measure under speci"c complex !ow 
and spatial geometry. φ ε( ) is de"ned 
as a quadratic form from the truncated 
Taylor-series approximation of the corre-
sponding cosh-exponential functional-
ity. This dissipative-extensional function 
φ ε( ) appears in the total stress equation 
as follows:

T A A I D= − ( ) −( ) ( )+ ( )1 2β φ ε βφ εDe f tr   .

 (9)

Multimode formulations and fur-
ther functionalization have used on the 
viscous coef"cient for speci"c applica-
tions – for further details, see (1-5). In 
Fig. 1c-d, typical response provided by 
the SwanINNFM(q) model variants, i.e., 
the swIM model, is illustrated. Here, 
one notes the control of the extensional 
viscosity response provided through 
λD , covering the window between the 
two limiting cases of FENE-CR and 
Oldroyd-B responses. In addition, these 
models provide a parametrisation for the 
"rst normal-stress difference in shear N1, 
via a softening relative to the Oldroyd-B 
quadratic response.

HYBRID NUMERICAL 
ALGORITHM OF FINITE 
ELEMENTS AND FINITE 
VOLUMES
The mathematical problem at hand in Eqs. 
(1)-(9), embodies a system of non-linear 
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partial differential equations that must be 
solved numerically with advanced algo-
rithms. A hybrid numerical algorithm 
based on "nite-element and "nite-volume 
discretisation approximations is used in 
this work to obtain numerical solutions 
to the problem of polymeric and WLMs 
!ow in complex geometries (1-8;12-15). 
This numerical algorithm is based on a 
hybrid scheme, built on a three-stage, 
semi-implicit, fractional-time scheme 
that utilises its "nite-element discreti-
sation for velocity and pressure, and its 
"nite-volume approximation for stress 
and !uidity. This procedure combines the 
advantages and bene"ts offered by each 
discretisation approach individually. The 
Galerkin "nite-element discretisation is 
applied to the components of the Cauchy-
continuity equations [Eqs. (1)-(2)], with 
fractional steps for the momentum equa-
tion in Stage 1, the pressure-correction 
equation in Stage 2, and the incompress-
ibility constraint in Stage 3, to ensure 
higher-order accuracy. Regarding its 
implementation, this leads to an element-
by-element Jacobi iteration in space for 
Stages 1 and 3; whilst for pressure-cor-
rection in Stage 2, a direct Choleski solu-
tion method is used. Quadratic velocity 
interpolation is imposed on the triangu-
lar "nite-element cell, along with linear 
interpolation for pressure. In contrast, 
for the "nite-volume sub-cell, a trian-
gular subdivision is constructed within 
the "nite-element cell, by connecting the 
intermediate nodes of the triangular-cell. 
Here, stress and !uidity variables [Eqs. 
(3)-(8)] are located at the vertices of the 
"nite-volume sub-cells; thus, interpola-
tion of the solution is avoided. For further 
details, see (1-8; 12-15).

COMPLEX FLOW SETTINGS
1) Contraction-expansion flow of 

polymeric solutions (1-5), and 
WLMs under shear-banding con-
ditions (8).

 In Fig. 2b, a schematic of a gener-
alised !ow domain for contraction 
!ows is provided. Some boundary 
conditions are shared between the 
settings for the !ow of polymeric 
liquids and WLMs. These are:

 a. No-slip boundary conditions on 
solid walls. Velocity is imposed 
as Dirichlet boundary condi-
tions on the contraction walls.

 b. At the geometry inlet (left) and 
outlet (right), velocity and stress 
are imposed by solving the 

constitutive equation in simple 
shear !ow.

  For the speci"c case of the !ow of 
shear-banding WLMs (Fig. 2c):

 a) Flow inception. In this case, the 
!ow is promoted through the 
drag exerted by the upper plate 
on the !uid. On the upper part 
of the geometry, the micellar 
solution moves with the plate 
velocity. In the lower part, the 
!ow is "xed and anchored to 
the solid wall that forms the 
obstruction.

 b) Frame of reference. The geometry 
is a planar contraction-expan-
sion, which we have designated 
as a modi"ed Couette !ow (8).

 c) Entry and exit conditions. Velocity 
may involve a single linear 
pro"le or a pro"le with two or 
more shear bands with differ-
ent velocities but supporting a 
single stress level, characteris-
tic of a banded !ow. Pressure is 
readjusted by the obstacle and 
is maintained at a constant level 
in the fully-developed flow 
regions, as expected in a classi-
cal Couette !ow.

2) Descent of a sphere in WLMs in a 
tube (7).

 Fig. 2a illustrates the !ow "eld 
of a sphere descending within a 
micellar !uid contained in a tube. 
For convenience, the geometry is 
shown horizontally. Since the sys-
tem is symmetrical, half of the !ow 
domain is shown, where the fol-
lowing boundary conditions apply:

 a) No-slip boundary condition on the 
surface of the sphere. Here, the 
basic assumption of !uid adhe-
sion on solid surfaces is consid-
ered as well, i.e., the velocity 
of the !uid in contact with the 
obstacle is equal to the sphere 
velocity.

 b) Symmetry condition along the 
equatorial axis of the sphere. A 
symmetry condition is applied 
behind and in front of the 
sphere, where velocity and 
stress are continuous.

 c) Flow inception. The !ow in this 
computational arrangement is 
promoted by a constant velocity 
applied from left to right with 
respect to the orientation of the 
illustration, keeping the sphere 
"xed. Here, the imposed base 

volumetric !ow rate is unitary, 
which is increased consecu-
tively in the simulations. This 
increase in !ow rate is re!ected 
through the increase in Deborah 
number, which, in this case, 
correlates with the volumetric 
!ow rate as follows: De U

L= λ1 ,  
where U is the approaching 
velocity (Fig. 2a).

  For the three examples treated 
in this work, the following 
implementations are consid-
ered for numerical stability and 
convergence:

 a) The VGR correction. Non-
homogeneous extensional 

FIGURE 2.  a) Schematics of #ow past 
sphere; b) Schematics of 4:1 contraction-
expansion #ow; and c) Schematics of the 
#ow through a plane contraction-expan-
sion with rounded edges. Reprinted from 
Journal of Non-Newtonian Fluid Mechanics, 
Vol. 309, J. Esteban López-Aguilar, Osvaldo 
Resendiz-Tolentino, Hamid R. Tamaddon-
Jahromi, Marco Ellero, Octavio Manero, 
Flow past a sphere: Numerical predic-
tions of thixo-viscoelastoplastic wormlike 
micellar solutions, 104902 1-22, Copyright 
(2022), with permission from Elsevier, from 
Physics of Fluids, Vol. 28, J. Esteban López-
Aguilar, Hamid R. Tamaddon-Jahromi, 
Michael F. Webster, Ken Walters. Numerical 
vs experimental pressure drops for Boger 
#uids in sharp-corner contraction #ow, 
103104–23, Copyright (2016), and from 
Vol. 35, J. Esteban López-Aguilar, Hamid R. 
Tamaddon-Jahromi, Marco Ellero, Octavio 
Manero, Shear banding predictions for 
wormlike micellar systems under a con-
traction–expansion complex #ow, 063101 
1-22, Copyright (2023), with permission 
from AIP Publishing.
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deformations are specified 
through the relevant velocity-
gradient components in the 
symmetry lines – this is referred 
to in (6-8) as the VGR correction.

 b) The ABS-f correction. The so-
called ABS-f correction is con-
sidered, where an absolute 
value operation is applied to 
the !ow quantities used in the 
internal-structure f-functional 
within the constitutive equa-
tion promoting the exposure of 
non-linear rheological features 
of the material. This correction 
provides material function pre-
diction (in these cases, viscos-
ity) in line with the Second Law 
of Thermodynamics (6-8). For 
the BMP + _τp model, the ABS-f 
correction applies over the dis-
sipation function τ p : D  com-
ponents in Eq. (5), whilst in the 
SwanINNFM(q) models, this 
correction is implemented over 
the trA-components.

RESULTS
In this section, the main results of model-
ling the !ows described in the previous 
section through the SwanINNFM(q) and 
BMP + _τp equations are described, for 
which numerical solutions were obtained 
using our hybrid "nite-element/"nite-
volume numerical algorithm (1-8;12-15).

For !ow past a sphere (7), the predic-
tive capabilities of our numerical tools 
are described in terms of: (i) the dimen-
sionless drag coef"cient K

KNewtonian , which 
re!ects the energy required for a sphere 
to descend in a WLMs and reveals !ow 
transitions; (ii) vortex dynamics, where 
the spatial evolution of the !ow "eld 
behind the sphere is studied and a non-
homogeneous uniaxial extensional !ow 
is veri"ed, i.e., with an inhomogeneous 
uniaxial extension rate; and (iii) the cor-
relation of this response with the evolu-
tion of the internal structure parameter 
of the material f. For the !ow through 
contraction-expansion geometries, similar 
signals are gathered for polymeric liq-
uids, where significantly-augmented 
pressure drops and highly-dynamic vor-
tex structures are recorded, whilst for a 
WLMs capable of developing shear bands 
(8), the results re!ect: (i) velocity "elds 
with two or more !ow bands and the 
interaction of this structured !ow with 
the obstruction; (ii) with this, the charac-
teristics of a banded !ow are studied in 

a two-dimensional geometry and their 
consequences on other variables, such 
as dimensionless !uidity and normal 
stresses (viscoelasticity).

1. Contraction-expansion !ow of poly-
meric solutions (1-5)
In Fig. 3, a comparison between experi-
mental and predictive trends on pres-
sure drops against !ow rate increase is 
provided for a sharp-cornered axisym-
metric 4:1 contraction !ow of Boger PAA/
corn syrup based !uids (1). Here, the 
experimental viscoelastic pressure-drop 
augmented trends are matched quanti-
tatively with our SwanINNFM(q) model 
under λD = 1 2. . In addition, kinematic 
information accompanies these trends, 
with a vortex-enhancement path starting 
with a salient-corner vortex at relatively 
small !ow rates that grows in size and 
intensity with Q-rise, evolving into an 
elastic-corner vortex that dominates the 
constriction. Moreover, vortex-intensity 
–Ψmin follows a monotonic rising trend 
with Q-rise. This may be correlated with 
the basic SwanINNFM(q) extensional-
viscosity ηExt-response, for which λD ≠ 0 
promotes a sustained rise (see Fig. 1c).

In Fig. 4, excess pressure drop (epd) 
against dimensionless !ow rate data 
is provided for the flow of a simi-
lar Boger PAA/corn syrup !uid in a 
sharp-cornered 10:1:10 axisymmetric 
contraction-expansion geometry (2). 
Outstanding epd values were experimen-
tally recorded, with the largest signal 
levelling over some "ve-to-six times that 

of an equivalently-viscous Newtonian 
corn-syrup !uid. Here, the swIM model-
variant in the SwanINNFM(q) family-
of-!uids captures the whole window of 
epd-response under rising λD . A sample 
of the vortex activity for these !uids 
is provided in Fig. 5, where, under the 
same 10:1:10 contraction !ow settings 
and an average λD = 0 3. , renders a map 
of the vortex-enhancement path pre-
dicted. Here, a three-staged vortex evo-
lution with De-rise is recorded, with a 
symmetric salient-corner vortex regime 
at relatively small dimensionless !ow 
rates, followed by the coexistence of 
salient-corner and lip vortices at interme-
diate De-numbers, to "nally evolve into 
an elastic-corner-vortex regime at large 
!ow rates.

In Fig. 6, attention is paid to a distinct 
contraction !ow setting under 4:1 planar 
sharp-cornered con"guration, in which 
we were able to capture the so-called bulb 
!ow reported by Binding and Walters (21). 
Here, we provide a vortex-activity path 
that resembles the qualitative description 
provided by Binding and Walters (21), for 
which, after a steady regime dominated 
by relatively reduced salient-corner vor-
tices, a lip vortex arises with Q-rise in a 
transitionary regime, which strength-
ens and coexists with the salient-corner 
structure, thus creating the bulb !ow. 
This transitionary phase is characterised 
computationally by solution !uctuation, 
recorded through periodic variations of 
pressure, velocity and stress, illustrated 
here through their L2-norms.

FIGURE 3.  Pressure drops against flow rate, vortex intensity and streamlines; 
SwanINNFM(q) swIM model-variant, λd = 1.2. Reprinted from Physics of Fluids, Vol. 28, 
J. Esteban López-Aguilar, Hamid R. Tamaddon-Jahromi, Michael F. Webster, Ken Walters. 
Numerical vs experimental pressure drops for Boger #uids in sharp-corner contraction 
#ow, 103104–23, Copyright (2016), with the permission of AIP Publishing.
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These kinds of trends in augmented 
pressure drops and vortex-enhancement 
mechanism are found with different !ow 
settings and under varying constriction 
aspect ratios. In general, the outlined 
pressure-drop-against-!ow-rate trends 
are correlated with the extensional vis-
cosity features of the polymeric solution 
studied. Vortex structure and evolution 
have been found correlated with the 
"rst normal-stress response within the 
corners of the constriction. For further 
details on these general "ndings, the 
characteristics of the constitutive models 
used, and the numerical implementation, 
the author refers the reader to (1-5).

2. Flow past sphere of WLMs (7)
In Fig. 7, predictions obtained for the 
dimensionless drag coef"cient K

KNewtonian
 

are plotted against dimensionless volu-
metric !ow rate in the form of Deborah 
number De , for three semi-dilute WLMs 
under a solvent fraction of β = 0 5.  and 
three variations of extensional proper-
ties with extensional response appar-
ently No-Hardening (NH), Moderate 
Hardening (MH) and Strong Hardening 
(SH) – see Fig. 1a and its extensional vis-
cosity response. The results obtained for 

K
KNewtonian  are referred to the ideal case of 
a Newtonian !uid with equivalent vis-
cosity; this base case is plotted in Fig. 7 
and appears as a unitary horizontal line. 
The WLMs under NH shows a stronger 
and abrupt decline with De -rise, even 
showing a plateau at high De-levels that 
asymptotes to K

KNewtonian
= 0 5. . The MH 

case re!ects a similar decrease, although 
its K

KNewtonian  values are higher than those 
under the NH case. This response corre-
lates with the relatively higher forces and 
viscosities, both in shear and extension, 
sustained by the MH solution (Fig. 1a-b), 
a trend that is sustained and is even more 
marked with the SH case. Interestingly, 
these declining K

KNewtonian -trends are 
observed in typical experimental studies 
of sphere settling in WLMs (22).

With focus on the MH case in Fig. 7,  
it is worth highlighting the fluctua-
tions recorded in K

KNewtonian  at high De .  
These !uctuations are associated with 
the development of vortices behind the 
sphere, which are one of the key !ow 
structures in !ow past spheres, i.e., the 
development of negative wakes (see  
Fig .8a). These !ow instabilities are char-
acterised by occurring at relatively high 
De ; for the case illustrated in Fig. 7, the 
critical dimensionless volumetric !ow 
rate for the instability is Decrit = 24 . Here 
in Fig. 8a, one can see a sample of the vor-
tex located at the equator of the sphere, 
which forms, grows, intensi"es and sup-
presses cyclically over time (see (7)). It is 
worth mentioning that this type of insta-
bilities have been widely studied experi-
mentally, happening at De numbers in 
the range of tenths of units (22, 51). Our 
research group is one of the "rst to report 
the theoretical-computational descrip-
tion of this phenomenon for WLMs (7).

In Fig. 8b, the dimensionless !uidity 
is illustrated, where a !uctuating state 
is apparent as a re!ection of the vortex 

activity and the associated negative-
wake cycle of Fig. 8a. One should recall 
that this dimensionless !uidity serves, 
in the BMP + _τp model, to estimate the 
level and the evolution of the material 
internal structure. Thus, these graphs 
depict, by correspondence, the change in 
the structure of the material due to the 
deformation imposed by the obstacle. In 
this case, it is worth highlighting that, in 
the instance of !uctuations in the sphere 
settling velocity, the structure of the 
material behind the sphere shows signi"-
cant variation, revealing the in!uence of 
the predominantly-extensional inhomo-
geneous !ow in the obstacle wake. This 
phenomenon has been attributed as the 
ruling factor for the development of !uc-
tuations in the sphere settling velocity in 
WLMs, associated with a mechanism of 
micellar sudden rupture in the sphere 

FIGURE 4.  Excess pressure drop against dimensionless #ow rate; SwanINNFM(q) swIM 
and swAM model-variant; 10:1:10 sharp-cornered axisymmetric contraction-expansion. 
Reprinted from Physics of Fluids, Vol. 29, J. Esteban López-Aguilar, Michael F. Webster, 
Hamid R. Tamaddon-Jahromi, Octavio Manero, David M. Binding, Ken Walters, On the use 
of continuous spectrum and discrete-mode di%erential models to predict contraction-
#ow pressure drops for Boger #uids., 121613–18, Copyright (2017), with the permission 
of AIP Publishing.

FIGURE 5.  Streamlines against #ow rate; 
SwanINNFM(q) swIM model-variant; 10:1:10 
sharp-cornered axisymmetric contraction-
expansion. Reprinted from Physics of 
Fluids, Vol. 29, J. Esteban López-Aguilar, 
Michael F. Webster, Hamid R. Tamaddon-
Jahromi, Octavio Manero, David M. 
Binding, Ken Walters, On the use of contin-
uous spectrum and discrete-mode di%er-
ential models to predict contraction-#ow 
pressure drops for Boger #uids., 121613–18, 
Copyright (2017), with the permission of 
AIP Publishing.
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wake due to the stretching they suffer 
(22, 51).

Moving on to the analysis of con-
centrated WLMs, characterised with 
the BMP + _τp model, under β→ 0 ,  
one should recognise that these materials 
take a semi-solid consistency, where their 
plastic properties are measured through 
an apparent yield stress. Numerical pre-
dictions are illustrated in Fig. 9 through 
yield-front data. These yield fronts con-
trast the yielded zones (!uidised; in red) 
close to the sphere and the unyielded 
zones (semi-solid; in blue). These regions 

are identi"ed via the comparison of the 
stress experienced by the !uid, measured 
through the stress second invariant experi-
enced by the solute, i.e., II

p p pτ
τ τ= 1

2 : ,  
and the yield stress τ0 . In Fig. 9, graphi-
cal evidence is provided contrasting the 
effects of decreasing the solvent fraction 
β  (increasing plasticity and thus τ0 ) in 
the range 0 005 1 9. /≤ ≤β , against De .  
Here, one may note that, under a "xed 
De, decreasing β  promotes the growth 
of the semisolid blues zones, even "nd-
ing instances where there is practically 
no lique"ed material in the !ow "eld; 

this would lead to spheres suspended in a 
semisolid gel. In contrast, under a "xed β ,  
increasing De  promotes asymmetry and 
growth of the yielded-red zones. These 
asymmetries result from the combina-
tion of the WLMs thixo-viscoelastoplastic 
properties successfully captured with the 
BMP + _τp model. Notably, these "ndings 
correspond satisfactorily with experi-
mental reports for Carbopol and WLMs 
through which smooth spheres of differ-
ent materials generate asymmetric yield 
fronts (52-53).

3. Shear Banding in Complex Deforma-
tions (8)

In this subsection, the !ow of a WLM 
susceptible to forming shear bands is 
analysed, i.e., in viscosity. The flow 
curves and material properties of WLMs 
that can develop banded !ows are illus-
trated in Fig. 10. Here, the key feature for 
developing shear bands is the presence 
of a total shear-stress Txy  !ow curve fol-
lowing a non-monotonic trend (Fig. 10a): 
a sigmoidal curve with a negatively-
sloped section in an intermediate shear-
rate range. This region of the !ow curve 
is identi"ed as the unstable branch, whilst 
the sections with positive slope at high 
and low shear rates are designated as 
stable branches. In Fig. 10b, the re!ection 
of the development of shear bands can 
be observed: the presence of the unstable 
zone in the stress causes an exaggerated 
shear thinning in the WLMs apparent 
viscosity, alongside the development of 
non-monotonic curves in the "rst normal-
stress difference in shear N

Shear1  (Fig. 10c);  
the extensional viscosity remains invari-
ant. The development of banded !ows 
is promoted in the BMP + _τp model 
through increasing the dimension-
less shear-banding intensity parameter 
ζ ϑ= U

L , which in Fig. 10 takes the values 
of ζ = { }0 3, . Here, the ζ = 0  case repre-
sents a !uid without the ability to develop 
shear bands (note its monotonic curve), 
whilst ζ = 3  characterises a !uid with 
an unstable branch at intermediate shear 
rates, capable of developing shear bands. 
Other models, such as the Vasquez-Cook-
McKinley (VCM) model, produce similar 
responses (50), as depicted in Fig. 10.

In Fig. 11, numerical solutions are 
provided of the modi"ed Couette !ow 
of a banding WLM !uid under ζ = 3  
and a non-banding !uid under ζ = 0 .  
Here, under the banding mode (left), the 
development of two shear bands in Ux  
is observed in the fully-developed !ow 

FIGURE 6.  Streamlines and L2-norms. Bulb #ow. SwanINNFM(q) swAM model-variant. 
Reprinted from Journal of Non-Newtonian Fluid Mechanics, Vol. 273, Michael F. Webster, 
Hamid R. Tamaddon-Jahromi, J. Esteban López-Aguilar, David M. Binding, Enhanced pres-
sure drop, planar contraction #ows and continuous spectrum models, 104184, Copyright 
(2019), with the permission of Elsevier.

FIGURE 7.  Dimensionless drag coe&cient K
KNewtonian  against dimensionless volumet-

ric #ow rate De ; BMP + _τp model; NH: {ω,ξG0} = {4,1}), MH: {ω,ξG0} = {4,0.1125} y SH: 
{ω,ξG0} = {0.28,0.1125}; β = 0.5. Reprinted from Journal of Non-Newtonian Fluid Mechanics, 
Vol. 309, J. Esteban López-Aguilar, Osvaldo Resendiz-Tolentino, Hamid R. Tamaddon-
Jahromi, Marco Ellero, Octavio Manero, Flow past a sphere: Numerical predictions of 
thixo-viscoelastoplastic wormlike micellar solutions, 104902 1-22, Copyright (2022), with 
permission from Elsevier.
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regions far from the constriction, one 
with red shading, which correlates with 
relatively high velocities, and another 
with blue shading, which corresponds to 
relatively lower velocities. This response 
is translated in the shear-rate ∂∂

U
y
x  plot into 

two bands marked by relatively high (red) 
and low (blue) shear rates, which occupy 
the !ow domain, and coincide with the 
viscosity, !uidity and normal-stress Txx  
bands, respectively. In contrast, the shear-
stress Txy  and pressure P  "elds remain 
homogeneous in the fully-developed !ow 
regions; the small !uctuations in Txy  are 
related to the discontinuity posed by the 
interface between the two shear bands 
and are minimal in magnitude.

Regarding the phenomenology 
observed in the contraction zone, one 
notes that the fully-developed banded 
!ow developed by the !uid under ζ = 3   
is lost when the material interacts with 
the obstacle. Once the material leaves the 
constriction zone and advances towards 
the simple-shear, fully-developed-!ow 
downstream region, the material devel-
ops shear bands again.

One can contrast the behaviour of a 
WLM !uid not susceptible to develop-
ing shear bands, i.e., under non-banding 
ζ = 0 mode in Fig. 11 (right). Here, the 
!ow structure contrasts with what was 
described for the banding case, since the 
!ow "elds do not display abrupt changes 
in the form of bands, although asymme-
try is maintained, promoted by the thixo-
viscoelastic BMP + _τp properties.

It is worth mentioning that this is one 
of the first theoretical-computational 
works capable of reproducing a shear-
banded !ow in a geometry that combines 
shear and extensional !ows simultane-
ously (8). In addition, these predictions 
can be used to analyse the !ow of other 
types of complex !uids that are processed 
in extruders, by idealising the contrac-
tion that materials undergo in nozzles to 
acquire their "nal shape, such as molten 
polymers and foods (54).

CONCLUSIONS
In this work, the area of action of Non-
Newtonian Fluid Mechanics and 
Computational Rheology has been fun-
damentally explained (9-11, 37-40), and 
its predictive potential for problems 
related to its application has been illus-
trated through three examples applied to 
a variety of materials widely used in the 
chemical industry: polymeric (16-21) and 

FIGURE 8.  a) Stream function and b) dimensionless #uidity at Decrit = 24 ; BMP + _τp 
model; MH: {ω,ξG0} = {4,0.1125}; β = 0.5. Development of negative wakes. Reprinted from 
Journal of Non-Newtonian Fluid Mechanics, Vol. 309, J. Esteban López-Aguilar, Osvaldo 
Resendiz-Tolentino, Hamid R. Tamaddon-Jahromi, Marco Ellero, Octavio Manero, Flow 
past a sphere: Numerical predictions of thixo-viscoelastoplastic wormlike micellar solu-
tions, 104902 1-22, Copyright (2022), with permission from Elsevier.

FIGURE 9. Yield fronts against #ow rate and solvent fraction; BMP + _τp model; MH: 
{ω,ξG0} = {4,0.1125}; β = {1/9, 0.01, 0.001}. Reprinted from Journal of Non-Newtonian Fluid 
Mechanics, Vol. 309, J. Esteban López-Aguilar, Osvaldo Resendiz-Tolentino, Hamid R. 
Tamaddon-Jahromi, Marco Ellero, Octavio Manero, Flow past a sphere: Numerical pre-
dictions of thixo-viscoelastoplastic wormlike micellar solutions, 104902 1-22, Copyright 
(2022), with permission from Elsevier.

FIGURE 10.  (a) Shear stress Txy , (b) shear ηShear  and extensional ηExt  viscosities, and (c) $rst 
normal-stress di%erence in shear N

Shear1 ; BMP + _τp model; {ω,ξG0} = {4,0.1136}, β = 0 01. ,  
ζ = { }0 3, . Reprinted from Physics of Fluids, Vol. 35, J. Esteban López-Aguilar, Hamid 
R. Tamaddon-Jahromi, Marco Ellero, Octavio Manero, Shear banding predictions for 
wormlike micellar systems under a contraction–expansion complex #ow, 063101 1-22, 
Copyright (2023), with permission from AIP Publishing.
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wormlike micellar solutions (22, 26-31). 
The examples discussed in this article 
are benchmark !ows in Non-Newtonian 
Fluid Mechanics (22, 37-40): (i) !ow past a 
sphere and (ii) !ow through diverse con-
traction-expansion settings. The consti-
tutive equations used to characterise the 
viscoelastic and thixo-viscoelastoplastic 
rheological properties of polymeric and 
WLMs are the SwanINNFM(q) model 
(1-5) and the BMP + _τp model (6-8). The 
mathematical models resulting from 
the consideration of the isothermal two-
dimensional !ow under incompressible 
conditions of polymeric and WLMs are 
solved with a hybrid "nite element-vol-
ume numerical algorithm (1-8, 12-15).

With these theoretical and numeri-
cal tool-sets, we reported success in the 
prediction of key experimental signals in 
contraction-type !ows of polymeric solu-
tions, such as augmented pressure-drops 
with respect to Newtonian !uids, and 
complex vortex-enhancement routes that 
reveal dissipation mechanisms enabling 
the !ow of these materials through con-
stricted geometries (1-5), even capturing 
shear-banded !ows in planar contraction-
expansion !ow-settings for WLMs (7). 
Computational signals for instabilities in 
particle settling within dilute WLMs were 
reported, for which !uctuations in the 

!ow "eld behind the sphere are recorded 
through cyclical-growing vortices and 
highly-variable !uid structure (8). For 
more concentrated WLMs, asymmetrical 
yield fronts were captured, resembling 
experimental !ow structures reported for 
Carbopol and typical WLMs (8).

Through the description of these three 
examples, the usefulness that theoreti-
cal-computational predictive tools can 
have for non-Newtonian !uid mechan-
ics is demonstrated, where the detailed 
computational solution of complex !ow 
systems with non-Newtonian materials 
provides numerical data that can help to 
model, describe, analyse, and understand 
!ow processes of interest in industrial 
and technological applications for other 
various materials, such as metallic alloys 
(55), in medicine, and in bioengineering 
(33-37).
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