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ABSTRACT

In this work, the essence of Non-
Newtonian Fluid Mechanics and
Computational Rheology is presented
through three examples applied to the
rheological characterisation of polymeric
solutions using the SwanINNFM(q)
family-of-fluids (1-5), and of worm-like
micellar solutions using the BMP + _t,
rheological equation-of-state (6-8), within
the computational modelling of two
benchmark flows in Non-Newtonian
Fluid Mechanics: contraction-expansion
flow geometries and flow past a sphere.
The predictive capabilities of our compu-
tational tools are demonstrated, where
mathematical models derived from
conservation principles are solved (9-11)
alongside the construction of constitu-
tive equations from theoretical rheology
(1-11). These mathematical models are
solved using a computational algorithm
based on a hybrid formulation of spa-
tial discretisation in the form of finite
elements for the mass and momentum
balance equations, and finite volumes
for the constitutive equation (1-8, 12-15).
In contraction-expansion type bench-
mark flows, firstly for polymeric fluids,
experimental pressure-drop measure-
ments were reproduced quantitatively
using the SwanINNFM family-of-fluids
(1-5). We were able, for the first time,
to predict quantitatively and explain
long-standing augmented excess pres-
sure-drops and highly-dynamic vortex
structures observed in the flow of poly-
meric Boger fluids (16-21). Building upon
contraction-expansion flows of thixo-
viscoelastoplastic concentrated worm-
like micellar solutions, the effects of

considering extreme shear thinning and
flow segregation through yield stress
and shear banding were demonstrated
(6-8, 22). Using the BMP + _t, constitu-
tive model (8), shear bands are predicted
in fully-developed flow zones away from
the constriction, and their interaction
with the complex deformation imposed
by the contraction is reported. For the
flow-past-sphere benchmark flow (7),
numerical solutions obtained with the
BMP + _t, model qualitatively reproduce
features reported experimentally for the
descent of spheres in worm-like micellar
solutions, i.e., a flow instability associated
with oscillations in the sphere settling
velocity and negative wakes (22), and,
for relatively concentrated micellar solu-
tions, asymmetrical yield fronts.

INTRODUCTION

One of the fundamental contribu-
tions of rheology is the identification of
diverse materials as Newtonian (those
that follow Newton’s Law of Viscosity,
i.e,, those which display a constant vis-
cosity at constant temperature and pres-
sure), and as non-Newtonian, i.e., those
that do not comply with the Newtonian
definition. The latter manifest non-linear
flow properties through a variable appar-
ent viscosity with deformation rate, time
of an imposed flow, and even displaying
simultaneous liquid and solid properties
in the form of viscoelasticity and yield
stress, to name a few typical rheological
responses (9-11).

In its practice, rheology divides its
study into four main areas (9-11): (i) rhe-
ometry, which spans over material-prop-
erty measurement, e.g., fundamentally

viscosity, elastic modulus, relaxation
time; (ii) constitutive modelling, through
which constitutive equations seek to
reproduce and explain the material prop-
erties of complex fluids; (iii) non-Newto-
nian fluid mechanics, which studies the
flow of non-Newtonian materials in com-
plex geometries, whose essence lies in
inhomogeneous deformations (deforma-
tions that combine shear and extension
simultaneously in the flow field) and are
reflected in physical arrangements with
diverse geometric changes observed in
nature and in technological applications,
such as contractions and expansions, and
flows around objects, among others; and
(iv) computational rheology, which focuses
its efforts in obtaining approximate
numerical solutions to the flows studied
in non-Newtonian fluid mechanics.

Complex fluids are materials with non-
linear rheological characteristics derived
from their microstructure, which may be
classified as soft matter (9-11). Complex
fluids are found in countless techno-
logical applications, e.g., cements, paints,
toothpaste, foams, crude oil and its heavy
fractions, drilling muds in oil extraction,
foodstuff, mayonnaise, plastics, reactive
mixtures, and cosmetics (9-11, 22-31). In
addition, many biological fluids, such as
blood, mucus, saliva and tissues, may
display non-linear rheological properties
(32-36).

The combination of: (i) the non-linear
rheological properties of complex fluids,
(ii) the conservation equations, i.e. of
mass, momentum and thermal energy,
and (iii) the simultaneous non-homoge-
neous shear and extensional deforma-
tions imposed in complex flows, result
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in mathematical problems of the highest
complexity when attempting to describe,
understand, and theoretically predict
the experimental manifestations in non-
Newtonian Fluid Mechanics (37-40).
The interest of Computational Rheology is
the prediction of complex flows of non-
Newtonian materials. It bases its action
on the development and application of
advanced numerical techniques to the
highly non-linear partial-differential-
equation systems that represent flow
problems whose solution is practically
unattainable by exact methods (37-40).

There is a plethora of numerical algo-
rithms for solving computational rheol-
ogy problems (37-41). In general, their
formulation has as a basis on Eulerian or
Lagrangian frames of reference. The most
popular Eulerian algorithms are based
on finite-element and finite-volume
methods (6-8, 37-40), devised to cover
the mixed parabolic-hyperbolic nature
of the mass-momentum-energy bal-
ance and constitutive equations. On the
side of Lagrangian algorithms, particle
dynamics methods (Smoothed Particle
Hydrodynamics, Dissipative Particle
Dynamics and lubrication dynamics
methods), are among the most widely
used (41), and represent a suitable option
for the computational prediction of the
rheology of suspensions and particulate
systems (42).

Polymeric materials (melts and solu-
tions) are made up of long-chain mol-
ecules, which interact closely through
entanglement and reptation in molten
and dissolved states. These interactions
are the origin of their characteristic
non-Newtonian features, in the form of
marked shear thinning, and viscoelas-
ticity through significantly-augmented
normal-stress differences (10-11). The
reflection of such rheological response in
complex deformations has been a matter
of extensive research (16-21). Studies on
many benchmark flows have focused on
their kinematic and dynamic response,
for which augmented pressure drops
and diverse vortex-enhancement mecha-
nisms occupy a central role (16-21). In fact,
the theoretical prediction and under-
standing of such features remain an open
research topic to date, where efforts are
still being concentrated in elucidating
how polymeric materials respond under
inhomogeneous deformations (1-6).

Wormlike micellar solutions (WLMs)
are complex fluids composed of disper-
sions of elongated micelles that interact

essentially through relatively weak entan-
glements; these physical interactions
promote their thixotropic, viscoelastic
and plastic properties (22, 25-31). WLMs
are also known as living polymers, due to
their ability to restructure when flowing
by two mechanisms, i.e., (i) reptation, as
polymers do, and (ii) construction and
destruction of micellar structures (22,
25-31). For these reasons and their var-
ied rheological properties, these complex
thixo-viscoelastoplastic materials are
used in a wide range of applications, such
as in cleaning and home and health-care
products (shampoos, soaps, detergents,
drug carriers); in the petroleum industry,
as drilling and well-stimulation fluids; in
pumping systems, lubricants and emulsi-
fiers (22, 25-31).

The diversity of rheological proper-
ties of polymers and WLMs is a chal-
lenge for the development of constitutive
equations capable of describing their
experimental manifestations in simple
and complex flows (37-40). Polymers and
WLMs generally display shear thinning,
extensional hardening and softening,
viscoelasticity, thixotropy (16-21, 22,
25-31) and, in the specific case of WLMs,
flow segregation in the form of yield
stress (27) and banding (35). All of these
responses occur simultaneously and
manifest across diverse spatial-temporal
scales (22, 25-31, 35).

Constitutive equations for polymeric
materials are diverse and numerous,
some coming from microscopic argu-
ments and others based on continuum
approaches (11). Among the most widely-
used constitutive-equation approaches
of differential nature are those of the
FENE type, where the Peterlin and the
Chilcott-Rallison closures dominate (11,
43-44), and the Phan-Thien-Tanner para-
digm (45), which have been successful in
reproducing and explaining the response
of a wide range of polymer melts and
solutions.

For WLMSs, constitutive equations
are still being developed (6-8, 22, 46-50).
There are two main theoretical frame-
works, namely, (i) theories based on
structural variables, and (ii) microscopic
theories. The former are the most popular,
as they portray the evolution of the inter-
nal WLM structure, explicitly related to
material functions (6-8, 46, 48-49). Among
these models are those in the Bautista-
Manero-Puig (BMP) (6-8) and de Souza-
Mendes (48-49) families. The constitutive
equations in the BMP framework predict
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key properties of WLMSs and other com-
plex fluids, and have been successfully
used to study the flow of WLMs in com-
plex deformations (6-8). Microscopic
theories study the interaction of micelles
in their construction/destruction dynam-
ics in flow, via kinetic equations whose
solution is related to material properties
through averages (47, 50).

Experimental studies on the flow of
polymeric fluids and WLMs in complex
geometries reveal rich features, with
dynamic vortex-enhancement mecha-
nisms and pressure drops. These act as
alternative energy-dissipation mecha-
nisms in contraction flows, and through
drag coefficients in sphere settling,
revealing instabilities manifested in par-
ticle oscillations and negative wakes (16-
22, 51).

In benchmark contraction and con-
traction-expansion flows, complex vortex
dynamics have been recorded experi-
mentally. At low volumetric flow rates,
symmetric kinematic structures are
observed, similar to those observed in
the contraction flow of Newtonian fluids.
At high volumetric flow rate, asymmet-
ric vortices, promoted by viscoelasticity,
lead to time-dependent chaotic flows (16-
22, 51).

In the sedimentation of smooth
spheres in semi-dilute WLMs, oscilla-
tions in the particle descent velocity
have been reported. These are caused by
strong negative wakes behind the sphere;
for polymeric liquids, a similar response
is recorded as velocity overshoots (16-21,
51). These phenomena have been stud-
ied as flow instabilities with respect to
the steady rate of descent characteris-
tic of Newtonian fluids (22). In WLMs,
these findings have been attributed to
the complex dynamics of structure con-
struction-destruction of the elongated
micelles (leading to thixotropy) and the
viscoelasticity of the micellar solution
(6-8, 22). For concentrated mixtures, these
thixo-viscoelastoplastic solutions form
gels that display markedly-asymmetric
yield fronts around the sphere (22, 51), as
previously reported by Holenberg et al.
(52) and Putz et al. (53).

One of the iconic manifestations of
WLMs is a type of flow segregation called
shear-banding, which is characterised by
a spontaneous separation of the solution
into two or more shear bands of material
that coexist, supporting a constant shear
stress, but with distinct apparent viscos-
ity (8, 22, 35).



This paper presents a compendium of
research work conducted by the author
on computational predictions of the
response of polymeric and WLM solutions
in complex benchmark flows (1-8). These
works illustrate the use of computational
rheology in the numerical solution of two
typical problems of non-Newtonian fluid
mechanics: flows past a sphere (7), and
flows through contractions and contrac-
tion-expansions (6,8). These benchmark
flows have industrial and technological
applicability; (i) flow around spheres is
applied in particle suspension in medi-
cine and the food industry (shelf life), and
is also an approximation for clay trans-
port in enhanced oil extraction fluids (37-
40); whilst (ii) contraction-expansion flow
is found in industrial equipment with
pipe and fitting changes (37-40), and lies
at the heart of polymer and food process-
ing operations (22, 54).

BALANCE AND CONSTITUTIVE
EQUATIONS

The general statement of the problem of
non-Newtonian flow in complex geom-
etries, i.e., generalised flow systems with
changes in shape and cross section, is
based on the fundamental conservation
equations and appropriate constitutive
equations accounting for the rheological
response of the materials considered. For
incompressible, isothermal, non-New-
tonian flow, the mass and momentum
balance equations in dimensionless form
are:

V'u:O, (1)
ou
Re[EJru-Vu]:prJrV-T, )

where u represents the velocity, p is the
isotropic pressure, t symbolises time
and V is the gradient operator, which
acts upon the three dimensions of space.
The Reynolds number Re = % char-
acterises the flow regime through the
ratio of inertial forces experienced by
the moving material against dissipative
viscous forces. Here, p represents the
material density, n, = 1,0 + 7, is a char-
acteristic viscosity, given by the level of
the first Newtonian plateau in the flow
curve (Fig. la), which is defined as the
sum of the viscous contributions of the
Newtonian solvent 7; and non-Newto-
nian solute 7,0 at vanishing deformation
rates, if the fluid is conceived as a solu-
tion. U and L represent, respectively,

characteristic velocity and length scales.
Here, the characteristic velocity U is asso-
ciated with the volumetric flow rate for
flow around a sphere (Fig. 2a) and for a
pressure-driven contraction flow (Fig. 2b);
in contrast, U is associated with the
velocity of the sliding wall of the contrac-
tion-expansion geometry in the modified
Couette flow of Fig. 2c. Complementarily,
the characteristic length L is related to the
geometry considered: in the case of con-
traction-type flows, it is associated with
the diameter of the constriction smallest
gap, and, in the case of flow past a sphere,
it is related to the particle diameter.

In non-Newtonian fluid mechanics,
it is convenient to consider the fluids as
solutions with solute and solvent com-
ponents. This is a concept known as
Elastic-Viscous Stress-Splitting (EVSS)
(10-11), where the solvent is specified as
Newtonian and the solute carries the

non-Newtonian characteristics of the
solution. This approach allows for a broad
applicability of rheological concepts to
the characterisation of many types of
materials with diverse non-Newtonian
characteristics, such as polymer solutions
(16-21), biofluids (32-36), metallic alloys
(55), among many others. Thus, within
the framework of the EVSS, the total
stress tensor T is divided into two con-
tributions: (i) the Newtonian solvent con-
tribution, i.e, 7, = 2n,D = 2n,(1— 5)D;
and (ii) the contribution of the non-New-
tonian solute T, for which a rheological
equation-of-state must be specified and
provides the nonlinear characteristics of
the solution. Here, D = %[Vqu(Vu)T]
is the rate-of-deformation tensor, which
collects the symmetric shear and normal
deformation rates that a fluid element can
experience in a three-dimensional space.
Furthermore, in the diffusive term on the
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FIGURE 1. a) and b) BMP + _t, model material functions in steady simple shear and uniax-
ial extension; rheological responses for three fluids with apparently Null Hardening (NH;
{0,Ec,} = {4,1}), moderate (MH; {®,&;,} = {4,0.1125}) and severe (SH; {®,&;,} = {0.28,0.1125})
features; 3 = 1/9 - comparison against Exponential Phan-Thien-Tanner (EPTT) and Vasquez-
Cook-McKinley (VCM) models. ¢) and d) SwanINNFM(q) swiM model extensional viscos-
ity and first normal-stress difference in shear. Reprinted from Journal of Non-Newtonian
Fluid Mechanics, Vol. 309, J. Esteban Lépez-Aguilar, Osvaldo Resendiz-Tolentino, Hamid
R. Tamaddon-Jahromi, Marco Ellero, Octavio Manero, Flow past a sphere: Numerical pre-
dictions of thixo-viscoelastoplastic wormlike micellar solutions, 104902 1-22, Copyright
(2022), and from Journal of Non-Newtonian Fluid Mechanics, Vol. 273, Michael F. Webster,
Hamid R. Tamaddon-Jahromi, J. Esteban Lopez-Aguilar, David M. Binding, Enhanced pres-
sure drop, planar contraction flows and continuous spectrum models, 104184, Copyright

(2019), with the permission of Elsevier.
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RHS of the solvent stress equation, the
solvent fraction 3 = ,,pﬂ”i,,,s = ZT defines
a dimensionless viscosity by comparing
the viscosity of the solvent 7, against the
total viscosity of the solution at vanish-
ing deformation rates 7y = 7,9 +7,. The
domain of this dimensionless viscosity
is 0 < 3 <1; here, 3 =1 characterises
a fluid with pure Newtonian character-
istics and viscosity 7,, whilst, comple-
mentarily, the § — 0 limit defines the
response of an extremely concentrated
system with non-Newtonian features.
Thus, the solvent fraction 3 serves as a
measure of the viscous solute-to-solvent
contributions to the total stress T .

To specify the rheological response of
the non-Newtonian solute, whose stress
is represented by 7,, and focusing on
WLMs, this work considers the BMP
theoretical framework in its most recent
variant: the BMP + _t, model (6-8). This
rheological equation-of-state predicts the
essential rheological response of WLMs
(25-31). For this purpose, the solute stress
obeys a generalised Oldroyd-B-type dif-
ferential form:

fr,+ Dez- =2(1-8)D, )

where the Deborah number De = N4
modulates the viscoelastic properties of
the solution through the relaxation time
of the material \; = ]” % which is defined
by the ratio of the solute viscosity 7, and
the elastic modulus G;, both measured
at low deformation rates. The viscoelas-
tic response of the solute resides in the
upper-convected derivative of the stress:

arp

o+ u-Vt, —(Vu)’

T, =T, V.
@

Its first term accounts for the varia-
tion of stress over time at a fixed point,
the second term considers the temporal
variation of stress due to motion, and the
last two terms close the definition with
the contribution given by the deforma-
tion of the material per se.

Finally, the first term on the LHS of
Eq. (3) considers a material internal-
structure functional f = %%, which, for
models in the BMP formahsm is defined
through a measure of the dimensionless
solute fluidity. This internal-structure
functional f obeys a temporal evolu-
tion through the following kinetic equa-
tion of fluid-structure construction and
destruction (6-8):

T:

I owvr=Laoy .
+(§GOD3—§f 7, : D],

The LHS of Eq. (5) measures the spatial-
temporal evolution of the dimensionless
fluidity, whilst its RHS contains kinetic
terms that measure the rates of internal-
structure construction and destruction
of the micellar solution, respectively, and
which are reflected in the change of the
fluidity of the material. Here, the dimen-
sionless time w = A Y modulates the
rate of formation of internal structure of
the micellar solution. Complementarily,
&, = koGo 5 and € = ky(ny, +n,) Y are
dimensionless stresses associated with
the destruction of the internal structure
of the material; here, k, is the inverse of
the characteristic stress required to break
the internal structure between the elon-
gated micelles in suspension, and 7., + 6
is the viscosity of the solute at high defor-
mation rates. The mechanism of structure
destruction is promoted by the magni-
tude of the energy dissipated by the sol-
ute per unit volume “r D‘ under flow.
Furthermore, to include the formation of
banded flows, the structure-destruction
coefficient must take a linear functional-
ity with respect to the rate-of-deforma-
tion tensor (8), i.e., k(D)= ko[1+ I,
where ¥ is the shear-banding intensity
parameter, and I, = %D - D isthesec-
ond invariant of the rate-of-deformation
tensor.

Eq. (5) stands for the latest model-
variant in the BMP family, i.e.,, BMP + T,
model, which considers the coupling
of thixotropy and viscoelasticity in
the evolution of the material structure.
Additionally, it provides a non-linear
evolution of the first normal-stress dif-
ference in steady simple shear, and an
extensional viscosity response with
hardening and softening, all in line
with fingerprints of typical WLMs (see
Fig. 1a-b).

For polymeric solutions, the base con-
stitutive equation approach used is that
under the SwanINNFM(q) umbrella (1-5),
which is constructed within a FENE-CR
framework, and supplemented with a
White-Metzner functionality on the vis-
cous coefficient. Here, the conformation-
tensor A-form of the base SwanINNFM(q)
model is:

f(trA)(A—T)+ DeA = 0. ©)
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The FENE-CR structure functional is
defined as:

f(trA) = E, @)

where [? is the finite extensibility param-
eter. The Kramers rule translates the con-
formation tensor and the stress tensor
signals as follows:

T

, =158 f(ira)a-1). ®

Finally, the implementation of
the dissipative extensional-function
d(€) = 1+ (\pé)* serves to devise an
extensional viscosity boosting mecha-
nism via an extension-dissipative times-
cale A\, modulating the influence of the
relevant extensional rate-of-deformation
measure under specific complex flow
and spatial geometry. ¢(¢) is defined
as a quadratic form from the truncated
Taylor-series approximation of the corre-
sponding cosh-exponential functional-
ity. This dissipative-extensional function
¢(€) appears in the total stress equation
as follows:

T =158 f(ira) (A - 1)6(¢) + 286 (¢)D

O

Multimode formulations and fur-
ther functionalization have used on the
viscous coefficient for specific applica-
tions — for further details, see (1-5). In
Fig. lc-d, typical response provided by
the SwanINNFM(q) model variants, i.e.,
the swIM model, is illustrated. Here,
one notes the control of the extensional
viscosity response provided through
Ap, covering the window between the
two limiting cases of FENE-CR and
Oldroyd-B responses. In addition, these
models provide a parametrisation for the
first normal-stress difference in shear N;,
via a softening relative to the Oldroyd-B
quadratic response.

HYBRID NUMERICAL
ALGORITHM OF FINITE
ELEMENTS AND FINITE
VOLUMES

The mathematical problem at hand in Egs.
(1)-(9), embodies a system of non-linear



partial differential equations that must be
solved numerically with advanced algo-
rithms. A hybrid numerical algorithm
based on finite-element and finite-volume
discretisation approximations is used in
this work to obtain numerical solutions
to the problem of polymeric and WLMs
flow in complex geometries (1-8;12-15).
This numerical algorithm is based on a
hybrid scheme, built on a three-stage,
semi-implicit, fractional-time scheme
that utilises its finite-element discreti-
sation for velocity and pressure, and its
finite-volume approximation for stress
and fluidity. This procedure combines the
advantages and benefits offered by each
discretisation approach individually. The
Galerkin finite-element discretisation is
applied to the components of the Cauchy-
continuity equations [Egs. (1)-(2)], with
fractional steps for the momentum equa-
tion in Stage 1, the pressure-correction
equation in Stage 2, and the incompress-
ibility constraint in Stage 3, to ensure
higher-order accuracy. Regarding its
implementation, this leads to an element-
by-element Jacobi iteration in space for
Stages 1 and 3; whilst for pressure-cor-
rection in Stage 2, a direct Choleski solu-
tion method is used. Quadratic velocity
interpolation is imposed on the triangu-
lar finite-element cell, along with linear
interpolation for pressure. In contrast,
for the finite-volume sub-cell, a trian-
gular subdivision is constructed within
the finite-element cell, by connecting the
intermediate nodes of the triangular-cell.
Here, stress and fluidity variables [Egs.
(3)-(8)] are located at the vertices of the
finite-volume sub-cells; thus, interpola-
tion of the solution is avoided. For further
details, see (1-8; 12-15).

COMPLEX FLOW SETTINGS

1) Contraction-expansion flow of

polymeric solutions (1-5), and
WLMs under shear-banding con-
ditions (8).
In Fig. 2b, a schematic of a gener-
alised flow domain for contraction
flows is provided. Some boundary
conditions are shared between the
settings for the flow of polymeric
liquids and WLMs. These are:

a. No-slip boundary conditions on
solid walls. Velocity is imposed
as Dirichlet boundary condi-
tions on the contraction walls.

b. At the geometry inlet (left) and
outlet (right), velocity and stress
are imposed by solving the

constitutive equation in simple
shear flow.

For the specific case of the flow of
shear-banding WLMs (Fig. 2¢):
Flow inception. In this case, the
flow is promoted through the
drag exerted by the upper plate
on the fluid. On the upper part
of the geometry, the micellar
solution moves with the plate
velocity. In the lower part, the
flow is fixed and anchored to
the solid wall that forms the
obstruction.

Frame of reference. The geometry
is a planar contraction-expan-
sion, which we have designated
as a modified Couette flow (8).
Entry and exit conditions. Velocity
may involve a single linear
profile or a profile with two or
more shear bands with differ-
ent velocities but supporting a
single stress level, characteris-
tic of a banded flow. Pressure is
readjusted by the obstacle and
is maintained at a constant level
in the fully-developed flow
regions, as expected in a classi-
cal Couette flow.

2) Descent of a spherein WLMs ina
tube (7).
Fig. 2a illustrates the flow field
of a sphere descending within a
micellar fluid contained in a tube.
For convenience, the geometry is
shown horizontally. Since the sys-
tem is symmetrical, half of the flow
domain is shown, where the fol-
lowing boundary conditions apply:

a)

No-slip boundary condition on the
surface of the sphere. Here, the
basic assumption of fluid adhe-
sion on solid surfaces is consid-
ered as well, i.e, the velocity
of the fluid in contact with the
obstacle is equal to the sphere
velocity.

Symmetry condition along the
equatorial axis of the sphere. A
symmetry condition is applied
behind and in front of the
sphere, where velocity and
stress are continuous.

Flow inception. The flow in this
computational arrangement is
promoted by a constant velocity
applied from left to right with
respect to the orientation of the
illustration, keeping the sphere
fixed. Here, the imposed base

b)

< O

" —= Sliding plate — [T
|nm!V 2 = T iomt
T Contactonwan
FIGURE 2. a) Schematics of flow past

sphere; b) Schematics of 4:1 contraction-
expansion flow; and c) Schematics of the
flow through a plane contraction-expan-
sion with rounded edges. Reprinted from
Journal of Non-Newtonian Fluid Mechanics,
Vol. 309, J. Esteban Lépez-Aguilar, Osvaldo
Resendiz-Tolentino, Hamid R. Tamaddon-
Jahromi, Marco Ellero, Octavio Manero,
Flow past a sphere: Numerical predic-
tions of thixo-viscoelastoplastic wormlike
micellar solutions, 104902 1-22, Copyright
(2022), with permission from Elsevier, from
Physics of Fluids, Vol. 28, J. Esteban Lopez-
Aguilar, Hamid R. Tamaddon-Jahromi,
Michael F. Webster, Ken Walters. Numerical
vs experimental pressure drops for Boger
fluids in sharp-corner contraction flow,
103104-23, Copyright (2016), and from
Vol. 35, J. Esteban Lépez-Aguilar, Hamid R.
Tamaddon-Jahromi, Marco Ellero, Octavio
Manero, Shear banding predictions for
wormlike micellar systems under a con-
traction—-expansion complex flow, 063101
1-22, Copyright (2023), with permission
from AIP Publishing.

volumetric flow rate is unitary,
which is increased consecu-
tively in the simulations. This
increase in flow rate is reflected
through the increase in Deborah
number, which, in this case,
correlates with the volumetric
flow rate as follows: De = X i,
where U is the approaching
velocity (Fig. 2a).

For the three examples treated
in this work, the following
implementations are consid-
ered for numerical stability and

convergence:
a) The VGR correction. Non-
homogeneous extensional
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deformations are specified
through the relevant velocity-
gradient components in the
symmetry lines — this is referred
to in (6-8) as the VGR correction.

b) The ABS-f correction. The so-
called ABS-f correction is con-
sidered, where an absolute
value operation is applied to
the flow quantities used in the
internal-structure f-functional
within the constitutive equa-
tion promoting the exposure of
non-linear rheological features
of the material. This correction
provides material function pre-
diction (in these cases, viscos-
ity) in line with the Second Law
of Thermodynamics (6-8). For
the BMP + _t, model, the ABS-f
correction applies over the dis-
sipation function “rp : D‘ com-
ponents in Eq. (5), whilst in the
SwanINNFM(q) models, this
correction is implemented over
the trA-components.

RESULTS

In this section, the main results of model-
ling the flows described in the previous
section through the SwanINNFM(q) and
BMP + _t, equations are described, for
which numerical solutions were obtained
using our hybrid finite-element/finite-
volume numerical algorithm (1-8;12-15).
For flow past a sphere (7), the predic-
tive capabilities of our numerical tools
are described in terms of: (i) the dimen-
sionless drag coefficient %, which
reflects the energy required for a sphere
to descend in a WLMSs and reveals flow
transitions; (ii) vortex dynamics, where
the spatial evolution of the flow field
behind the sphere is studied and a non-
homogeneous uniaxial extensional flow
is verified, i.e.,, with an inhomogeneous
uniaxial extension rate; and (iii) the cor-
relation of this response with the evolu-
tion of the internal structure parameter
of the material f. For the flow through
contraction-expansion geometries, similar
signals are gathered for polymeric lig-
uids, where significantly-augmented
pressure drops and highly-dynamic vor-
tex structures are recorded, whilst for a
WLMs capable of developing shear bands
(8), the results reflect: (i) velocity fields
with two or more flow bands and the
interaction of this structured flow with
the obstruction; (ii) with this, the charac-
teristics of a banded flow are studied in

a two-dimensional geometry and their
consequences on other variables, such
as dimensionless fluidity and normal
stresses (viscoelasticity).

1. Contraction-expansion flow of poly-
meric solutions (1-5)

In Fig. 3, a comparison between experi-
mental and predictive trends on pres-
sure drops against flow rate increase is
provided for a sharp-cornered axisym-
metric 4:1 contraction flow of Boger PAA/
corn syrup based fluids (1). Here, the
experimental viscoelastic pressure-drop
augmented trends are matched quanti-
tatively with our SwanINNFM(q) model
under A\p = 1.2. In addition, kinematic
information accompanies these trends,
with a vortex-enhancement path starting
with a salient-corner vortex at relatively
small flow rates that grows in size and
intensity with Q-rise, evolving into an
elastic-corner vortex that dominates the
constriction. Moreover, vortex-intensity
—¥,,;, follows a monotonic rising trend
with Q-rise. This may be correlated with
the basic SwanINNFM(q) extensional-
viscosity Ng,-response, for which Ap = 0
promotes a sustained rise (see Fig. 1c).

In Fig. 4, excess pressure drop (epd)
against dimensionless flow rate data
is provided for the flow of a simi-
lar Boger PAA/corn syrup fluid in a
sharp-cornered 10:1:10 axisymmetric
contraction-expansion geometry (2).
Outstanding epd values were experimen-
tally recorded, with the largest signal
levelling over some five-to-six times that
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of an equivalently-viscous Newtonian
corn-syrup fluid. Here, the swIM model-
variant in the SwanINNFM(q) family-
of-fluids captures the whole window of
epd-response under rising A,. A sample
of the vortex activity for these fluids
is provided in Fig. 5, where, under the
same 10:1:10 contraction flow settings
and an average )\, = 0.3, renders a map
of the vortex-enhancement path pre-
dicted. Here, a three-staged vortex evo-
lution with De-rise is recorded, with a
symmetric salient-corner vortex regime
at relatively small dimensionless flow
rates, followed by the coexistence of
salient-corner and lip vortices at interme-
diate De-numbers, to finally evolve into
an elastic-corner-vortex regime at large
flow rates.

In Fig. 6, attention is paid to a distinct
contraction flow setting under 4:1 planar
sharp-cornered configuration, in which
we were able to capture the so-called bulb
flow reported by Binding and Walters (21).
Here, we provide a vortex-activity path
that resembles the qualitative description
provided by Binding and Walters (21), for
which, after a steady regime dominated
by relatively reduced salient-corner vor-
tices, a lip vortex arises with Q-rise in a
transitionary regime, which strength-
ens and coexists with the salient-corner
structure, thus creating the bulb flow.
This transitionary phase is characterised
computationally by solution fluctuation,
recorded through periodic variations of
pressure, velocity and stress, illustrated
here through their L2-norms.

Flow direction
—_—
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FIGURE 3.

Pressure drops against flow rate, vortex intensity and streamlines;

SwanINNFM(q) swiM model-variant, A, = 1.2. Reprinted from Physics of Fluids, Vol. 28,
J. Esteban Lépez-Aguilar, Hamid R. Tamaddon-Jahromi, Michael F. Webster, Ken Walters.
Numerical vs experimental pressure drops for Boger fluids in sharp-corner contraction
flow, 103104-23, Copyright (2016), with the permission of AIP Publishing.
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FIGURE 4. Excess pressure drop against dimensionless flow rate; SwanINNFM(q) swiM
and swAM model-variant; 10:1:10 sharp-cornered axisymmetric contraction-expansion.
Reprinted from Physics of Fluids, Vol. 29, J. Esteban Lopez-Aguilar, Michael F. Webster,
Hamid R. Tamaddon-Jahromi, Octavio Manero, David M. Binding, Ken Walters, On the use
of continuous spectrum and discrete-mode differential models to predict contraction-
flow pressure drops for Boger fluids., 121613-18, Copyright (2017), with the permission

of AIP Publishing.

These kinds of trends in augmented
pressure drops and vortex-enhancement
mechanism are found with different flow
settings and under varying constriction
aspect ratios. In general, the outlined
pressure-drop-against-flow-rate trends
are correlated with the extensional vis-
cosity features of the polymeric solution
studied. Vortex structure and evolution
have been found correlated with the
first normal-stress response within the
corners of the constriction. For further
details on these general findings, the
characteristics of the constitutive models
used, and the numerical implementation,
the author refers the reader to (1-5).

2. Flow past sphere of WLMs (7)

In Fig. 7, predictions obtained for the
dimensionless drag coefficient "
are plotted against dimensionless volu-
metric flow rate in the form of Deborah
number De, for three semi-dilute WLMs
under a solvent fraction of 3 = 0.5 and
three variations of extensional proper-
ties with extensional response appar-
ently No-Hardening (NH), Moderate
Hardening (MH) and Strong Hardening
(SH) — see Fig. 1a and its extensional vis-
cosity response. The results obtained for
KNew’fDm are referred to the ideal case of
a Newtonian fluid with equivalent vis-
cosity; this base case is plotted in Fig. 7
and appears as a unitary horizontal line.
The WLMs under NH shows a stronger
and abrupt decline with De-rise, even
showing a plateau at high De-levels that
asymptotes to g — = 0.5. The MH

case reflects a similar decrease, although
its g-— values are higher than those
under the NH case. This response corre-
lates with the relatively higher forces and
viscosities, both in shear and extension,
sustained by the MH solution (Fig. 1a-b),
a trend that is sustained and is even more
marked with the SH case. Interestingly,
these declining % —-trends are
observed in typical experimental studies
of sphere settling in WLMs (22).

With focus on the MH case in Fig. 7,
it is worth highlighting the fluctua-
tions recorded in m at high De.
These fluctuations are associated with
the development of vortices behind the
sphere, which are one of the key flow
structures in flow past spheres, i.e., the
development of negative wakes (see
Fig .8a). These flow instabilities are char-
acterised by occurring at relatively high
De; for the case illustrated in Fig. 7, the
critical dimensionless volumetric flow
rate for the instability is De,,; = 24. Here
in Fig. 8a, one can see a sample of the vor-
tex located at the equator of the sphere,
which forms, grows, intensifies and sup-
presses cyclically over time (see (7)). It is
worth mentioning that this type of insta-
bilities have been widely studied experi-
mentally, happening at De numbers in
the range of tenths of units (22, 51). Our
research group is one of the first to report
the theoretical-computational descrip-
tion of this phenomenon for WLMs (7).

In Fig. 8b, the dimensionless fluidity
is illustrated, where a fluctuating state
is apparent as a reflection of the vortex

FIGURE 5. Streamlines against flow rate;
SwanINNFM(q) swiM model-variant; 10:1:10
sharp-cornered axisymmetric contraction-
expansion. Reprinted from Physics of
Fluids, Vol. 29, J. Esteban Lépez-Aguilar,
Michael F. Webster, Hamid R. Tamaddon-
Jahromi, Octavio Manero, David M.
Binding, Ken Walters, On the use of contin-
uous spectrum and discrete-mode differ-
ential models to predict contraction-flow
pressure drops for Boger fluids., 121613-18,
Copyright (2017), with the permission of
AIP Publishing.

activity and the associated negative-
wake cycle of Fig. 8a. One should recall
that this dimensionless fluidity serves,
in the BMP + T model, to estimate the
level and the evolution of the material
internal structure. Thus, these graphs
depict, by correspondence, the change in
the structure of the material due to the
deformation imposed by the obstacle. In
this case, it is worth highlighting that, in
the instance of fluctuations in the sphere
settling velocity, the structure of the
material behind the sphere shows signifi-
cant variation, revealing the influence of
the predominantly-extensional inhomo-
geneous flow in the obstacle wake. This
phenomenon has been attributed as the
ruling factor for the development of fluc-
tuations in the sphere settling velocity in
WLMs, associated with a mechanism of
micellar sudden rupture in the sphere
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FIGURE 6. Streamlines and L2-norms. Bulb flow. SwanINNFM(q) swAM model-variant.
Reprinted from Journal of Non-Newtonian Fluid Mechanics, Vol. 273, Michael F. Webster,
Hamid R. Tamaddon-Jahromi, J. Esteban Lépez-Aguilar, David M. Binding, Enhanced pres-
sure drop, planar contraction flows and continuous spectrum models, 104184, Copyright

(2019), with the permission of Elsevier.

wake due to the stretching they suffer
(22, 51).

Moving on to the analysis of con-
centrated WLMSs, characterised with
the BMP + _1, model, under 8 —0,
one should recognise that these materials
take a semi-solid consistency, where their
plastic properties are measured through
an apparent yield stress. Numerical pre-
dictions are illustrated in Fig. 9 through
yield-front data. These yield fronts con-
trast the yielded zones (fluidised; in red)
close to the sphere and the unyielded
zones (semi-solid; in blue). These regions

are identified via the comparison of the
stress experienced by the fluid, measured
through the stress second invariant experi-
enced by the solute, i.e, II. = /%?F : 7:-P ,
and the yield stress 7. In'Fig. 9, graphi-
cal evidence is provided contrasting the
effects of decreasing the solvent fraction
B (increasing plasticity and thus 7,) in
the range 0.005 < 3 <1/9, against De.
Here, one may note that, under a fixed
De, decreasing B promotes the growth
of the semisolid blues zones, even find-
ing instances where there is practically
no liquefied material in the flow field;

i
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FIGURE 7. Dimensionless drag coefficient

K

Knewtonian

against dimensionless volumet-

ric flow rate De; BMP + _t, model; NH: {0,&g0} = {4,1}), MH: {®,&5,} = {4,0.1125} y SH:
{®,€¢,} =1{0.28,0.1125}; B = 0.5. Reprinted from Journal of Non-Newtonian Fluid Mechanics,
Vol. 309, J. Esteban Lépez-Aguilar, Osvaldo Resendiz-Tolentino, Hamid R. Tamaddon-
Jahromi, Marco Ellero, Octavio Manero, Flow past a sphere: Numerical predictions of
thixo-viscoelastoplastic wormlike micellar solutions, 104902 1-22, Copyright (2022), with

permission from Elsevier.
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this would lead to spheres suspended in a
semisolid gel. In contrast, under a fixed 3,
increasing De promotes asymmetry and
growth of the yielded-red zones. These
asymmetries result from the combina-
tion of the WLMs thixo-viscoelastoplastic
properties successfully captured with the
BMP + _t, model. Notably, these findings
correspond satisfactorily with experi-
mental reports for Carbopol and WLMs
through which smooth spheres of differ-
ent materials generate asymmetric yield
fronts (52-53).

3. Shear Banding in Complex Deforma-
tions (8)

In this subsection, the flow of a WLM
susceptible to forming shear bands is
analysed, ie. in viscosity. The flow
curves and material properties of WLMs
that can develop banded flows are illus-
trated in Fig. 10. Here, the key feature for
developing shear bands is the presence
of a total shear-stress T,, flow curve fol-
lowing a non-monotonic trend (Fig. 10a):
a sigmoidal curve with a negatively-
sloped section in an intermediate shear-
rate range. This region of the flow curve
is identified as the unstable branch, whilst
the sections with positive slope at high
and low shear rates are designated as
stable branches. In Fig. 10b, the reflection
of the development of shear bands can
be observed: the presence of the unstable
zone in the stress causes an exaggerated
shear thinning in the WLMs apparent
viscosity, alongside the development of
non-monotonic curves in the first normal-
stress difference in shear Ny, (Fig. 10c);
the extensional viscosity remains invari-
ant. The development of banded flows
is promoted in the BMP + _t, model
through increasing the dimension-
less shear-banding intensity parameter
¢ = ¥, which in Fig. 10 takes the values
of ( = {0,3}. Here, the ¢ = 0 case repre-
sents a fluid without the ability to develop
shear bands (note its monotonic curve),
whilst ¢ = 3 characterises a fluid with
an unstable branch at intermediate shear
rates, capable of developing shear bands.
Other models, such as the Vasquez-Cook-
McKinley (VCM) model, produce similar
responses (50), as depicted in Fig. 10.

In Fig. 11, numerical solutions are
provided of the modified Couette flow
of a banding WLM fluid under ¢ =3
and a non-banding fluid under ¢ =0.
Here, under the banding mode (left), the
development of two shear bands in U,
is observed in the fully-developed flow
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FIGURE 8. a) Stream function and b) dimensionless fluidity at De,,;; = 24 ; BMP + _t,
model; MH: {®,&;,} = {4,0.1125}; B = 0.5. Development of negative wakes. Reprinted from
Journal of Non-Newtonian Fluid Mechanics, Vol. 309, J. Esteban Lépez-Aguilar, Osvaldo
Resendiz-Tolentino, Hamid R. Tamaddon-Jahromi, Marco Ellero, Octavio Manero, Flow
past a sphere: Numerical predictions of thixo-viscoelastoplastic wormlike micellar solu-
tions, 104902 1-22, Copyright (2022), with permission from Elsevier.

FIGURE 9. Yield fronts against flow rate and solvent fraction; BMP + _t, model; MH:
{,Eq0} = {4,0.1125}; B = {1/9, 0.01, 0.001}. Reprinted from Journal of Non-Newtonian Fluid
Mechanics, Vol. 309, J. Esteban Lépez-Aguilar, Osvaldo Resendiz-Tolentino, Hamid R.
Tamaddon-Jahromi, Marco Ellero, Octavio Manero, Flow past a sphere: Numerical pre-
dictions of thixo-viscoelastoplastic wormlike micellar solutions, 104902 1-22, Copyright
(2022), with permission from Elsevier.
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FIGURE 10. (a) Shear stress T, (b) shear 7swear and extensional 7g viscosities, and (c) first
normal-stress difference in shear N,, ;BMP + _t, model; {w,&s,} = {4,0.1136}, 3 = 0.01,
¢= {0,3}. Reprinted from Physics of Fluids, Vol. 35, J. Esteban Lopez-Aguilar, Hamid
R. Tamaddon-Jahromi, Marco Ellero, Octavio Manero, Shear banding predictions for
wormlike micellar systems under a contraction-expansion complex flow, 063101 1-22,
Copyright (2023), with permission from AIP Publishing.

regions far from the constriction, one
with red shading, which correlates with
relatively high velocities, and another
with blue shading, which corresponds to
relatively lower velocities. This response
is translated in the shear-rate % plot into
two bands marked by relatively high (red)
and low (blue) shear rates, which occupy
the flow domain, and coincide with the
viscosity, fluidity and normal-stress T,
bands, respectively. In contrast, the shear-
stress T,, and pressure P fields remain
homogeneous in the fully-developed flow
regions; the small fluctuations in T,, are
related to the discontinuity posed by the
interface between the two shear bands
and are minimal in magnitude.

Regarding the phenomenology
observed in the contraction zone, one
notes that the fully-developed banded
flow developed by the fluid under ¢ = 3
is lost when the material interacts with
the obstacle. Once the material leaves the
constriction zone and advances towards
the simple-shear, fully-developed-flow
downstream region, the material devel-
ops shear bands again.

One can contrast the behaviour of a
WLM fluid not susceptible to develop-
ing shear bands, i.e., under non-banding
¢ =0 mode in Fig. 11 (right). Here, the
flow structure contrasts with what was
described for the banding case, since the
flow fields do not display abrupt changes
in the form of bands, although asymme-
try is maintained, promoted by the thixo-
viscoelastic BMP + _t, properties.

It is worth mentioning that this is one
of the first theoretical-computational
works capable of reproducing a shear-
banded flow in a geometry that combines
shear and extensional flows simultane-
ously (8). In addition, these predictions
can be used to analyse the flow of other
types of complex fluids that are processed
in extruders, by idealising the contrac-
tion that materials undergo in nozzles to
acquire their final shape, such as molten
polymers and foods (54).

CONCLUSIONS

In this work, the area of action of Non-
Newtonian Fluid Mechanics and
Computational Rheology has been fun-
damentally explained (9-11, 37-40), and
its predictive potential for problems
related to its application has been illus-
trated through three examples applied to
a variety of materials widely used in the
chemical industry: polymeric (16-21) and
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FIGURE 11. Velocity in the x-direction v,, shear rate ‘?a”yx , viscosity 7, fluidity f = ";J
shear stress T,,, normal stress in x-direction T,,, pressure P; BMP + _t, model; ¢ = {O,ﬁ},
{,E¢} =1{4,0.1136}, B = 0.01. Reprinted from Physics of Fluids, Vol. 35, J. Esteban Lépez-
Aguilar, Hamid R. Tamaddon-Jahromi, Marco Ellero, Octavio Manero, Shear banding pre-
dictions for wormlike micellar systems under a contraction-expansion complex flow,
063101 1-22, Copyright (2023), with permission from AIP Publishing.

wormlike micellar solutions (22, 26-31).
The examples discussed in this article
are benchmark flows in Non-Newtonian
Fluid Mechanics (22, 37-40): (i) flow past a
sphere and (ii) flow through diverse con-
traction-expansion settings. The consti-
tutive equations used to characterise the
viscoelastic and thixo-viscoelastoplastic
rheological properties of polymeric and
WLMs are the SwanINNFM(q) model
(1-5) and the BMP + _t, model (6-8). The
mathematical models resulting from
the consideration of the isothermal two-
dimensional flow under incompressible
conditions of polymeric and WLMs are
solved with a hybrid finite element-vol-
ume numerical algorithm (1-8, 12-15).
With these theoretical and numeri-
cal tool-sets, we reported success in the
prediction of key experimental signals in
contraction-type flows of polymeric solu-
tions, such as augmented pressure-drops
with respect to Newtonian fluids, and
complex vortex-enhancement routes that
reveal dissipation mechanisms enabling
the flow of these materials through con-
stricted geometries (1-5), even capturing
shear-banded flows in planar contraction-
expansion flow-settings for WLMs (7).
Computational signals for instabilities in
particle settling within dilute WLMs were
reported, for which fluctuations in the

flow field behind the sphere are recorded
through cyclical-growing vortices and
highly-variable fluid structure (8). For
more concentrated WLMs, asymmetrical
yield fronts were captured, resembling
experimental flow structures reported for
Carbopol and typical WLMs (8).

Through the description of these three
examples, the usefulness that theoreti-
cal-computational predictive tools can
have for non-Newtonian fluid mechan-
ics is demonstrated, where the detailed
computational solution of complex flow
systems with non-Newtonian materials
provides numerical data that can help to
model, describe, analyse, and understand
flow processes of interest in industrial
and technological applications for other
various materials, such as metallic alloys
(55), in medicine, and in bioengineering
(33-37).
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