
Exposing life’s  
limits with  
dimensionless  
numbers
Steven Vogel
A crude device for quantification shows 
how diverse aspects of distantly related 
organisms reflect the interplay of the 
same underlying physical factors.
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T he impressive performance of evolution as a 
design mechanism needs no belaboring. Phys-
ics, though, constitutes a larger reality that 
evolution can no more transcend than a cow 

can jump upward at escape velocity. Enzymes cannot 
act as Maxwellian demons, nor can birds turn off 
gravity. Physics limits life’s designs no less rigidly than 
it constrains our own technology.

But how, in practice, can we locate the limits that 
the physical context sets on life? At least for under-
standing its macroscopic, mechanical aspects, a device 
long used by engineers in particular proves to be use-
ful. Surprisingly often, boundaries get set by the inter-
play of two competing factors, and their ratio, ex-
pressed in dimensionless terms, provides us with at 
least heuristic guidance.

As a simple if fanciful example, consider the limits 
to stacking. The ratio of the stress on the pile’s base to 
the compressive strength of the blocks’ material can-
not exceed one. Or, 

ρgh
σ

where ρ is the density of the material, g is the strength 
of gravity, h is the height and σcm is the material’s ulti-
mate compressive stress or crushing strength. Insert-
ing values, we find that ordinary bricks run into trou-
ble at a height of less than 400 meters, but granite can 
be piled to nearly 5000 meters; bone and wood do bet-
ter, and a pile of either could exceed 8000 meters. So 
simple gravitational loading imposes no serious design 
limitation. Doing the same thing for tensile loading 
gives the length at which a cable breaks from 
self-loading alone. It exposes the impossibility of low-
ering a rope to Earth’s surface from a satellite in geo-
synchronous orbit, a notion both raised and shot 
down back in 1966 by a group at the Woods Hole 
Oceanographic Institute.1

Dimensionless numbers are usually offshoots of 
their parent subject, dimensional analysis, and hun-
dreds have been defined and named.2,3 Most consist of 
the ratio of two forces, such as viscous and gravita-
tional. But they can be contrived without formal anal-
yses, with just an eye to practical utility. They typically 
permit simple but still quantitative views of compli-
cated physical phenomena. Biology, cursed by compli-
cated phenomena, needs even such relatively crude 
tools.

Dimensionlessness holds an additional appeal for 
biologists. It can keep size from confusing an analysis, 
which is no small matter for a field whose subjects en-
compass lengths spanning eight orders of magnitude. 
For instance, the ratio of surface area to volume is im-
portant when looking at the sizes of cells, at swim-
ming speeds and at metabolic rates, but its values re-
flect both size and shape. If something (sinking rates 
of plankton, let’s say) varies with surface-to-volume 
ratio, either shape or size may be responsible. A di-
mensionless version, such as the ratio of surface 
cubed to volume squared, depends on shape alone. 
Something shape dependent will vary with this cubed/
squared ratio, while a purely size-dependent phenom-
enon won’t.

Swimming, gas extraction,  
gait changes
William Froude (1810–79) first devised a useful way to 
extrapolate performance data from small model ships 
moving slowly to full-size ships at their intended 
speeds. We now use a scaling parameter that bears his 
name for a lot more than ensuring dynamic similarity 
between model and ship. One way to get the Froude 
number is by taking the ratio of the inertial force that 
keeps the water within a wave moving to the gravita-
tional force that prefers the water’s surface to be flat. 
Thus,

v

where v is the speed at which the waves move across 
the water’s surface and l is the distance between adja-
cent crests. (Sometimes the square root of the relation-
ship is used as the Froude number.) Waves move at a 
specific Froude number. So longer waves travel faster 
than shorter ones, at least in the range (lengths 
greater than a few centimeters) where inertial and 
gravitational forces are what matter.

A surface ship with an ordinary water-displacing 
hull creates waves as it moves. In particular, it makes 
a bow wave in front and additional waves along its 
length and at its stern. At full (“hull”) speed, it’s left 
with a bow wave and a stern wave, the two separated 
by the length of the ship’s hull. All is well as long as 
the ship doesn’t exceed the speed that waves of that 
length will travel. Going faster than the critical Froude 
number of about 0.16 requires that the ship leave its 
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beneficent stern wave astern and try to cut through or 
climb up its bow wave. That’s why getting ahead be-
comes an uphill battle, as the small ship of figure 1 
discovers. Crucial here is the longer-is-faster rule, 
which permits the longer ship to go faster before 
reaching the point at which its power requirement 
rises steeply.

Surface ships are practical, in short, when they’re 
long. A 100 m long ship reaches hull speed at about 
13 m/s, or 28 mph, whereas a 10 m long ship can do 
only 4 m/s, or 8 mph—or just a little more with a 
clever hull design. That’s why animals find that swim-
ming with a displacement hull on the surface is such a 
bad deal relative to swimming fully submerged. A 
duck, with a hull length of about a third of a meter, 
hits hull speed at 0.7 m/s, or 1.6 mph. Fully sub-

merged, it can swim several times as fast.4 Terrie Wil-
liams of the University of California, Santa Cruz found 
that above hull speed, mink towed along the surface 
had up to ten times as much drag as they did when 
fully submerged.5

The value of that critical Froude number shows 
why decent surface speeds are off-limits for the sizes 
of most of nature’s craft, why even its air breathers 
mostly swim submerged. An occasional animal por-
poises up and down through the interface or planes 
on the surface, but only a large whale could consider 
migrating as a surface ship. Snorkeling is rare, per-
haps because swimming deep enough to keep wave 
drag low requires breathing against too much hydro-
static pressure—an argument originally raised by 
Knut Schmidt-Nielsen of Duke University for why 

Figure 1. Rubber ducky being towed in a flow 
tank just under (top) and just over (bottom) its 
hull speed. Notice that at the higher speed this 
small surface ship tips upward and its stern 
wave disappears.

➤
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long-necked dinosaurs couldn’t have walked around 
largely submerged.6

Mention of hydrostatic pressure brings up another 
limit for which the Froude number provides insight. 
Consider an organism attached to a rock beneath 
flowing water while it manages to hold on to a bubble 
of air. The flow of water, by Bernoulli’s principle—that 
a fluid’s velocity and static pressure vary inversely—
will reduce the pressure in the bubble. So while the 
very front of the bubble may be subjected to an in-
ward dynamic pressure, the rest will be drawn out-
ward. If sufficient air is dissolved in the water, oxygen 
and nitrogen will diffuse into the bubble, which could 
act as a permanent lung. And the water of rapid 
streams is usually equilibrated with the atmospheric 
air above. But the subambient pressure in the bubble 
isn’t necessarily subatmospheric, for ambient pressure 
increases hydrostatically with depth. Pressure reduc-
tion in the bubble follows Bernoulli’s principle, so it 
depends on the square of the flow speed. For the bub-
ble to provide a permanent lung, the ratio of the 
flow-induced pressure decrease to the hydrostatic 
pressure increase (inertial and gravitational forces, 
again) must exceed one, or,

where h is the depth and Cp is an empirically deter-
mined pressure coefficient.7

For small bubbles, Cp will be about 0.2, so the criti-
cal depth can be expressed as a Froude number v2/gh 
of about 10, with h now indicating depth. That’s a se-
vere constraint: For a brisk water speed of a meter per 
second, the lung will persist only down to a depth of a 
centimeter. To go down a full meter would require a 
10 m/s flow, a speed encountered only in waterfalls 
and large, breaking waves. At least a few organisms 
do use the device—a West African beetle that dives 
into shallow, rapid streams and grazes on the algae on 
their rocky floors, and the pupae of some midges (fig-
ure 2) attached to rocks in torrential streams.8,9 But 
we’re no longer surprised by the rarity of the scheme.

An application of the Froude number both more 
general and closer to home was pointed out by R. Mc-
Neill Alexander of Leeds University.10 He noted that in 
a walking gait, an animal uses gravitational energy 
storage in pendulum fashion to reduce the work of re-
peatedly accelerating inertial legs. Animals of all sizes 
should walk in a dynamically similar manner at a 
given Froude number, when length in the formula is 
redefined as the hip-to-ground distance. To keep stor-
ing energy as they walk faster, animals increase ampli-
tude, or stride length, rather than frequency. Dynamic 
similarity implies that all will reach the practical am-
plitude maximum at about the same Froude number, 
which turns out to be between 0.5 and 0.6. At that 
point, animals ranging from small insects to large 
mammals shift to a trot or some other gait that uses 
elastic energy storage (mainly in tendons) instead of 

Figure 2. Pupa of a midge with a bubble 
between its gills, together with several larvae of 
the same species—Neocurupira chiltoni (in the 
blepharocerid family). The bubble acts as a 
permanent lung, with air diffusing into it from 
the flowing water. (Photo courtesy of Douglas 
Craig, University of Alberta.)

➤

36  PT FEBRUARY 2026

v



gravitational storage. The transition point, of course, is 
size dependent. You can walk comfortably while the 
youngster holding your hand prefers to jog. For a typi-
cal adult, the gait transition happens at about the ex-
pected 5 mph—try it. Recently, Rodger Kram and his 
coworkers at the University of California, Berkeley 
found that the transition happens at the same Froude 
number even when the value of gravitational acceler-
ation is altered.11

Alexander noted as well that the trot-to-gallop tran-
sition for quadrupeds occurs at Froude numbers be-
tween 2 and 4, still a fairly specific transition point 
considering the size range involved. This is puzzling, 
because neither gait involves gravitational energy 
storage. The explanation may turn not on the upper 
speed limit of trotting but on the lower limit of gallop-
ing—an animal is in free fall for a time within each 
stride, and it ought to tolerate a fall of a fixed fraction 
of leg length. So gravity can reasonably reenter the 
picture. If the period of falling is a fixed fraction of 
stride duration and if running speed at transition  
varies with leg length times stride frequency (which is 
supported by observations),12 then the Froude number 
ought to set that transition point.

Walking on water, getting sap up 
the tree
For us, water’s high surface tension is a mild nuisance 
ordinarily mitigated by a dose of detergent. For other 
organisms, typically smaller than we, it can be a 
major player in their physical world. Quite a few crea-
tures can walk on water, pressing legs into the inter-

face and using the upward component of surface ten-
sion for support. But they are mainly insects and 
spiders that span a narrow size range of about a milli-
meter to a centimeter or two in length. A pair of di-
mensionless numbers sheds some light on the bounds 
of their window of opportunity.

The upper size limit ought to involve, as competing 
factors, the upward force of surface tension and the 
downward force of gravity. If the animal isn’t to fall 
through, the ratio of gravitational force to surface ten-
sion force, the Bond number, should be less than one: 
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Figure 3. Walking on water. The schematic 
diagram shows legs pressing on the air–
water interface where surface tension is 
more than adequate for support (Bond 
number Bo < 1), and where the weight of 
the animal just reaches the force that can be 
sustained by surface tension (Bo = 1).

➤

where γ is the surface tension and l is the wetted pe-
rimeter, which is the length of the air-water-leg inter-
face (figure 3). Assuming unpolluted water, a human 
wearing my size 9C sandals could weigh no more than 
10 grams to stand or 5 grams (one leg supporting) to 
walk. But an insect weighing a tenth of a gram needn’t 
be bizarrely shaped—1.3 mm will do for a perimeter, 
which a water strider, for instance, can divide among 
four contacting legs. A fringe of hydrophobic foot 
hairs gives it lots of leeway. For that matter, some 
creatures can jump vertically from the surface, which 
demands support by an upward force an order of 
magnitude greater. Ignoring shape and substituting 
density times length cubed for mass shows that the 
Bond number varies with length squared. So larger is 
very much worse.13
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What about the lower size limit? Here the problem 
isn’t support but locomotion. The water’s surface ten-
sion will pull against an animal whichever way it tries 
to move. Can it get enough inertial force to offset the 
force of surface tension? Put another way, it needs a 
sufficiently high value of the ratio of those forces, 
given by the Weber number,  

Trunk

Soil

h

Leaf

r

Figure 4. Continuous columns of liquid sap, nearly pure water, run up 
a tree and connect the water between soil particles with the wet walls 
of the cells within the leaves that contact the air. Supporting the 
columns of height h, as well as offsetting the pressure losses due to 
flow and capillary forces within the soil, requires that the radius of 
curvature r of the final air–water interfaces be very small.

➤

death, a perilous entanglement or an indispensable 
support.”14

The interplay of gravity and surface tension may be 
still more important in quite a different biological con-
text. The columns of liquid sap within even the tallest 
tree extend, uninterrupted by gas, from roots to 
leaves. Could capillary rise account for the ascent of 
sap? Assuming perfect wetting of the walls of the con-
duits, the upward pressure will be twice the surface 
tension divided by conduit radius, so we can write 
that Bond number as

Bo ρghr
γ

not to find the surface a fatal trap. So the animal has 
to be sufficiently large and fast; because size and 
speed are ordinarily correlated, that makes real trou-
ble for really tiny creatures. As D’Arcy Thompson, the 
greatest prose artist among biologists, put it, “A water 
beetle finds the surface of a pool a matter of life and 

For the Bond number not to exceed one with a typical 
conduit radius of a twentieth of a millimeter, the rise h 
must remain below about 3 m. That wouldn’t be much 
of a tree; capillary rise simply won’t do the job.

In the generally accepted picture, columns of sap 
are maintained by the considerable internal cohesion 
of water, in essence hanging from the tops of trees and 
drawn up by evaporative water loss from the leaves, 
as in figure 4.15 Putting aside the matter of cohesion, 
we can ask how the columns can remain open to the 
air at the top. Put another way, we can ask why, since 
water vapor quite clearly leaves the leaves, air doesn’t 
enter. Here the relevant interfacial radius is much 
smaller, about a ten-thousandth of a millimeter for the 
pores in the walls of cells within the leaves. With this 
radius, the Bond number won’t rise above one and air 
won’t be pulled in by gravity until a tree exceeds 
1500 meters in height—over an order of magnitude 
higher than any tree ever known. So trees are not lim-
ited in height on this account, and they have lots of 
margin for pressure losses from flow in the conduits 
and from extracting water from soil.

Two matters of circulation
Perhaps nowhere does physics so strongly constrain 
the arrangements of organisms as in their systems for 
moving fluids through themselves. Surface tension 
may play a much smaller role in animals than we 
noted in plants, but gravity matters as much to a large, 
terrestrial animal as to a tree. And sucking with sub-
ambient pressures is a game played largely by plants, 
with their noncollapsible piping; siphoning has been 
persuasively excluded even for giraffes and thus most 
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likely for dinosaurs. So, lacking much in the way of 
auxiliary pumps, we need hearts that can pump blood 
up to our heads with enough pressure left to drive 
blood through arterioles and capillaries. (See the arti-
cle by George J. Hademenos on the physics of cerebral 
aneurysms, Physics Today, February 1995, page 24.)

Trouble ensues if an animal has a height, expressed 
in units of blood pressure, that exceeds its systolic 
blood pressure, the peak output of the left ventricle. 
That’s a rough-and-ready criterion: On the one hand, 
one’s heart isn’t in one’s feet, and so body height over-
states the hill to be climbed, while on the other hand, 
systolic pressure overstates the pressure drop avail-
able to supply the brain. Still, we can define what we 
could call “circulatory hazard” as the ratio of mano-
metric height (blood density times gravity times 
height) to systolic pressure, and assert that it ought to 
stay below one.

What happens in mammals proves intriguing. Most 
mammals have about the same resting systolic pres-
sure as we humans—120 mm of mercury, correspond-
ing to a manometric height of about 1.7 m or between 
5 and 6 feet. That works for cat, dog or human, but 
species much taller than we increasingly depart from 
the typical mammalian pressure. Horses run about 
180 mm Hg at rest, and giraffes get as high as 300.16 So 
humans are near the inflection point where a plot of 
manometric height against blood pressure, as in fig-
ure 5, begins to slope upward—as necessary to keep 

the circulatory hazard below one. If I stand up sud-
denly after sleeping horizontally, I get a bit dizzy, 
which I’m told indicates that I’m not hypertensive. 
Our cat should have no such problem.

For aquatic animals, living in a medium near blood 
density, height and posture are of little concern, so 
whales have normal mammalian pressure and sea 
snakes have the normal reptilian pressure of around 
40 mm Hg. A terrestrial snake is okay on the ground, 
but how can it climb a tree without passing out? 
Tree-climbing snakes keep their circulatory hazard 
under control by a heroic adjustment—their hearts 
are located considerably nearer their front ends. One 
wonders about long-necked dinosaurs; they must have 
had the fully separate systemic and pulmonary circu-
lations of present birds (and humans), together with 
the high pressures of giraffes.17 Physics, again, doesn’t 
bend for evolution.

Physiology textbooks often begin their section on 
circulatory systems by talking about Bernoulli’s princi-
ple. Only a few ever mention Bernoulli again—proba-
bly a good thing, as we’ll see. Consider what should 
happen if a fluid pulses through a pipe with a flexible 
wall. Bernoulli’s principle implies lower pressures 
with faster flow, so the pipe ought to constrict as the 
flow speeds up. Another rule, the Hagen–Poiseuille 
equation, predicts the opposite. It describes the pres-
sure necessary to force a laminar flow through a pipe 
whose walls exert some resistance, and it makes clear 

Figure 5. Systolic blood pressure as a 
function of animal height. The pressure 
shows little regular variation among small- 
and medium-sized mammals. But it must 
(and does) rise in large mammals so that it 
remains at least as great as manometric 
height (the product of blood density, 
gravitational field strength and the 
animal’s height).

➤
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that faster flow requires higher pressure. Is a given 
flow Bernoulli dominated or Hagen–Poiseuille domi-
nated? We need do no more than look at their ratio 
(using dynamic pressure ρv2/2 for the former),

ρvr
μl

ρvd
μ

speed v2
2 – v1

2. So efficiency, usually called the Froude 
propulsion efficiency, is simply7

η v
v v

where μ and ρ are the dynamic viscosity and density 
of blood, respectively.

For a pipe 100 mm long and 1 mm in diameter car-
rying blood at 100 mm/s, the ratio has a value of about 
0.01, indicating that Hagen–Poiseuille is in charge and 
Bernoulli has little to say.7 Because circulatory systems 
have their pipes serially arrayed, the effective lengths 
are in practice even longer. In circulatory systems, 
Bernoulli’s principle finds use only around heart 
valves, at pathological stenoses and in a few other 
places. That one’s pulse is felt as an arterial expansion 
rather than constriction ought to make the point.  
Bernoulli does better in turbulent flow or where (as  
in carburetors) the ratio of pipe radius to length is 
high. Maybe the terminal ends of the urethras of  
large animals are braced, like vacuum-cleaner hoses, 
against collapse.

Incidentally, the relationship in the equation above 
turns out to be a version of the Reynolds number, the 
ratio of inertial to viscous forces and the most famous 
of all dimensionless numbers in fluid mechanics.

Jets, propellers and wings
Efficiencies are dimensionless indices that establish 
limits, usually by setting an ideal of 100%. Perhaps  
of more biological interest are places where low  
values preclude the use of certain devices. Thus the 
maximum thermal efficiency of an engine with a heat 
source at 40 °C and a sink at 0 °C—a range that a wet, 
proteinaceous organism may achieve—is less than 
13%. That nature lacks heat engines should thus be  
no surprise.

Consider a device, such as a propeller, that provides 
thrust by speeding up a fluid flowing through it from 
v1, the craft’s speed, to v2, some output speed. The de-
vice’s thrust is the product of the mass it processes per 
unit time and the increase in speed (v2 – v1) it imparts. 
Its power output is that thrust times the craft’s speed. 
Its power input is kinetic energy per unit time, or half 
that mass per unit time multiplied by the difference in 
the squares of the speed of its output and the craft’s 

Now v2 has to be at least a bit above v1 if any thrust is 
to be generated, and so 100% efficiency can’t be 
reached. But making v2 approach v1 means processing 
the largest possible volume of fluid and giving it the 
least increase in speed. That’s a bad indictment of jets 
relative to paddles or propellers—a jet ordinarily 
gives a smaller mass flux a higher incremental speed. 
In this light, it’s understandable that neither Hero’s jet 
engine of the first century nor James Rumsey’s pulse-
jet steamboat of 1787 led anywhere.17

But nature makes quite a few jet engines—in jelly-
fish, salps, frogfish, dragonfly nymphs, squid, scallops 
and others. They’re probably easy to achieve given 
that organisms often push water through themselves 
to filter food or gain oxygen, often make one-way 
valves, and often wrap muscle around soft tubes. 
Aside from squid, though, nature’s large, fast swim-
mers—fish, penguins, seals, whales and such—all use 
some form of propeller, like our propellers except for 
being oscillatory rather than rotational. Jets lose when 
competition between fins or flukes and jets turns on 
Froude propulsion efficiency. Squid can go fast—8 m/s 
is impressive for foot-long swimmers. But they do so 
only briefly, to escape predators or lunge at prey, 
when efficiency must matter little, and they use their 
fins for steady traveling.7

We have a similarly equivocal attitude toward jets. 
No commercially produced cars or motorcycles and 
only a few boats use jet engines. We usually reserve 
them for high-speed applications since, when push 
comes to shove, the jet’s output speed has to be high 
enough to exceed the craft’s speed. An exception, the 
Harrier jet, a small military aircraft that can take off 
vertically and hover, consumes fuel at a notoriously 
high rate. One can imagine a birdlike creature that 
uses its chest muscles and a pair of one-way valves  
to run a pulse-jet engine that provides thrust and re-
spiratory gas exchange at the same time. Birds, in fact, 
do pump air through their lungs unidirectionally. But 
even the fastest known avian flyer, a falcon diving at  
a little over 60 m/s, or 130 mph, is surely too slow to 
make good use of the scheme.18
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Froude propulsion efficiency exposes yet another 
limit, although this one matters mostly for human 
technology. Our earliest successful aircraft (ignoring 
lighter-than-air fliers) and most of our present ones 
get lift from fixed wings and forward propulsion  
from propellers or jets. That combination is almost 
unknown among birds, bats and insects, which get 
both lift and propulsion from pointing a single 
thruster in the appropriate direction. The helicopter, 
our analog of nature’s fliers, wins no prizes for either 
fuel economy or range. Are nature’s fliers as bad?

The utility of fixed wings turns out to depend on 
size. The lift of a wing varies with its area, while the 
weight of craft to be lifted varies with its volume. 
Larger thus means relatively lift-deprived unless 
wings are disproportionately large—or unless the  
flying machine goes faster. A faster v1 demands a 
greater v2 to generate forward thrust. Lift, of course, 
comes from downward thrust, and that’s the crux of 
the problem. The vertical speed of an airplane is triv-
ial, so the downward component of v1 is negligible. If 
the propeller or jet is simply reaimed to get some 
downward momentum flux, then v2down – v1down will be 
great and the efficiency low. A fixed wing acts as a 
transformer, converting some of the high-speed,  
low-volume rearward flow from propeller or jet into 
a low-speed, high-volume downward flow behind the 
wing, and thereby creating lift efficiently.

Nature’s fliers go much more slowly—a bird that 
flies horizontally at 30 m/s is remarkable, while an 
airplane that flies that slowly is equally special. So  
flying animals can achieve adequately high propul-
sion efficiencies without resorting to separate fixed 
wings and propellers. Or mostly so, since the inner 
portions of the wings of large birds operate nearly as 
fixed, horizontal airfoils. The relatively large wings of 
nature’s small fliers permit low speeds. Thus, very 
small birds can hover steadily, medium-sized ones can 
hover only momentarily and large birds can’t hover at 
all. The advent of hovering aircraft awaited engines of 
very high power-to-weight ratios, and the very slow  
human-powered aircraft have gigantic wings.

Dimensionless numbers find use in many other  
biological or at least biomechanical situations. Some 
are well-established in the physical sciences, where 
they get used in much the same fashion; others have 
their variables redefined for biological purposes; still 
others have been especially contrived. Some set spe-
cific boundaries for the possible; others provide scal-
ing rules that show how the desirable slopes off to-

ward the impractical. Some answer specific questions; 
others just head us in some useful direction. Most, 
though, involve more complicated stories than  
those just related, which merely give the flavor of  
the game.                                                                     PT
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