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Exposing life’s
limits with
dimensionless
numbers
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A crude device for quantification shows
how diverse aspects of distantly related
organisms reflect the interplay of the

same underlying physical factors.
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he impressive performance of evolution as a

design mechanism needs no belaboring. Phys-

ics, though, constitutes a larger reality that

evolution can no more transcend than a cow
can jump upward at escape velocity. Enzymes cannot
act as Maxwellian demons, nor can birds turn off
gravity. Physics limits life’s designs no less rigidly than
it constrains our own technology.

But how, in practice, can we locate the limits that
the physical context sets on life? At least for under-
standing its macroscopic, mechanical aspects, a device
long used by engineers in particular proves to be use-
ful. Surprisingly often, boundaries get set by the inter-
play of two competing factors, and their ratio, ex-
pressed in dimensionless terms, provides us with at
least heuristic guidance.

As a simple if fanciful example, consider the limits
to stacking. The ratio of the stress on the pile’s base to
the compressive strength of the blocks’ material can-
not exceed one. Or,
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where p is the density of the material, g is the strength
of gravity, h is the height and o, is the material’s ulti-
mate compressive stress or crushing strength. Insert-
ing values, we find that ordinary bricks run into trou-
ble at a height of less than 400 meters, but granite can
be piled to nearly 5000 meters; bone and wood do bet-
ter, and a pile of either could exceed 8000 meters. So
simple gravitational loading imposes no serious design
limitation. Doing the same thing for tensile loading
gives the length at which a cable breaks from
self-loading alone. It exposes the impossibility of low-
ering a rope to Earth’s surface from a satellite in geo-
synchronous orbit, a notion both raised and shot
down back in 1966 by a group at the Woods Hole
Oceanographic Institute.

Dimensionless numbers are usually offshoots of
their parent subject, dimensional analysis, and hun-
dreds have been defined and named.>* Most consist of
the ratio of two forces, such as viscous and gravita-
tional. But they can be contrived without formal anal-
yses, with just an eye to practical utility. They typically
permit simple but still quantitative views of compli-
cated physical phenomena. Biology, cursed by compli-
cated phenomena, needs even such relatively crude
tools.
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Dimensionlessness holds an additional appeal for
biologists. It can keep size from confusing an analysis,
which is no small matter for a field whose subjects en-
compass lengths spanning eight orders of magnitude.
For instance, the ratio of surface area to volume is im-
portant when looking at the sizes of cells, at swim-
ming speeds and at metabolic rates, but its values re-
flect both size and shape. If something (sinking rates
of plankton, let’s say) varies with surface-to-volume
ratio, either shape or size may be responsible. A di-
mensionless version, such as the ratio of surface
cubed to volume squared, depends on shape alone.
Something shape dependent will vary with this cubed/
squared ratio, while a purely size-dependent phenom-
enon won’t.

Swimming, gas extraction,
gait changes

William Froude (1810-79) first devised a useful way to
extrapolate performance data from small model ships
moving slowly to full-size ships at their intended
speeds. We now use a scaling parameter that bears his
name for a lot more than ensuring dynamic similarity
between model and ship. One way to get the Froude
number is by taking the ratio of the inertial force that
keeps the water within a wave moving to the gravita-
tional force that prefers the water’s surface to be flat.
Thus,

where v is the speed at which the waves move across
the water’s surface and [ is the distance between adja-
cent crests. (Sometimes the square root of the relation-
ship is used as the Froude number) Waves move at a
specific Froude number. So longer waves travel faster
than shorter ones, at least in the range (lengths
greater than a few centimeters) where inertial and
gravitational forces are what matter.

A surface ship with an ordinary water-displacing
hull creates waves as it moves. In particular, it makes
a bow wave in front and additional waves along its
length and at its stern. At full (“hull”) speed, it’s left
with a bow wave and a stern wave, the two separated
by the length of the ship’s hull. All is well as long as
the ship doesn’t exceed the speed that waves of that
length will travel. Going faster than the critical Froude
number of about 0.16 requires that the ship leave its



beneficent stern wave astern and try to cut through or
climb up its bow wave. That’s why getting ahead be-
comes an uphill battle, as the small ship of figure 1
discovers. Crucial here is the longer-is-faster rule,
which permits the longer ship to go faster before
reaching the point at which its power requirement
rises steeply.

Surface ships are practical, in short, when they’re
long. A 100 m long ship reaches hull speed at about
13 m/s, or 28 mph, whereas a 10 m long ship can do
only 4 m/s, or 8 mph—or just a little more with a
clever hull design. That’s why animals find that swim-
ming with a displacement hull on the surface is such a
bad deal relative to swimming fully submerged. A
duck, with a hull length of about a third of a meter,
hits hull speed at 0.7 m/s, or 1.6 mph. Fully sub-

< Figure 1. Rubber ducky being towed in a flow
tank just under (top) and just over (bottom) its
hull speed. Notice that at the higher speed this
small surface ship tips upward and its stern
wave disappears.

merged, it can swim several times as fast.* Terrie Wil-
liams of the University of California, Santa Cruz found
that above hull speed, mink towed along the surface
had up to ten times as much drag as they did when
fully submerged.®

The value of that critical Froude number shows
why decent surface speeds are off-limits for the sizes
of most of nature’s craft, why even its air breathers
mostly swim submerged. An occasional animal por-
poises up and down through the interface or planes
on the surface, but only a large whale could consider
migrating as a surface ship. Snorkeling is rare, per-
haps because swimming deep enough to keep wave
drag low requires breathing against too much hydro-
static pressure—an argument originally raised by
Knut Schmidt-Nielsen of Duke University for why
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long-necked dinosaurs couldn’t have walked around
largely submerged.®

Mention of hydrostatic pressure brings up another
limit for which the Froude number provides insight.
Consider an organism attached to a rock beneath
flowing water while it manages to hold on to a bubble
of air. The flow of water, by Bernoulli’s principle—that
a fluid’s velocity and static pressure vary inversely—
will reduce the pressure in the bubble. So while the
very front of the bubble may be subjected to an in-
ward dynamic pressure, the rest will be drawn out-
ward. If sufficient air is dissolved in the water, oxygen
and nitrogen will diffuse into the bubble, which could
act as a permanent lung. And the water of rapid
streams is usually equilibrated with the atmospheric
air above. But the subambient pressure in the bubble
isn’t necessarily subatmospheric, for ambient pressure
increases hydrostatically with depth. Pressure reduc-
tion in the bubble follows Bernoulli’s principle, so it
depends on the square of the flow speed. For the bub-
ble to provide a permanent lung, the ratio of the
flow-induced pressure decrease to the hydrostatic
pressure increase (inertial and gravitational forces,
again) must exceed one, or,
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where h is the depth and C, is an empirically deter-
mined pressure coefficient.’
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For small bubbles, Cp will be about 0.2, so the criti-
cal depth can be expressed as a Froude number v?/gh
of about 10, with h now indicating depth. That’s a se-
vere constraint: For a brisk water speed of a meter per
second, the lung will persist only down to a depth of a
centimeter. To go down a full meter would require a
10 m/s flow, a speed encountered only in waterfalls
and large, breaking waves. At least a few organisms
do use the device—a West African beetle that dives
into shallow, rapid streams and grazes on the algae on
their rocky floors, and the pupae of some midges (fig-
ure 2) attached to rocks in torrential streams.® But
we’re no longer surprised by the rarity of the scheme.

An application of the Froude number both more
general and closer to home was pointed out by R. Mc-
Neill Alexander of Leeds University.’® He noted that in
a walking gait, an animal uses gravitational energy
storage in pendulum fashion to reduce the work of re-
peatedly accelerating inertial legs. Animals of all sizes
should walk in a dynamically similar manner at a
given Froude number, when length in the formula is
redefined as the hip-to-ground distance. To keep stor-
ing energy as they walk faster, animals increase ampli-
tude, or stride length, rather than frequency. Dynamic
similarity implies that all will reach the practical am-
plitude maximum at about the same Froude number,
which turns out to be between 0.5 and 0.6. At that
point, animals ranging from small insects to large
mammals shift to a trot or some other gait that uses
elastic energy storage (mainly in tendons) instead of

< Figure 2. Pupa of a midge with a bubble
between its gills, together with several larvae of
the same species—Neocurupira chiltoni (in the
blepharocerid family). The bubble acts as a
permanent lung, with air diffusing into it from
the flowing water. (Photo courtesy of Douglas
Craig, University of Alberta.)
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gravitational storage. The transition point, of course, is
size dependent. You can walk comfortably while the
youngster holding your hand prefers to jog. For a typi-
cal adult, the gait transition happens at about the ex-
pected 5 mph—try it. Recently, Rodger Kram and his
coworkers at the University of California, Berkeley
found that the transition happens at the same Froude
number even when the value of gravitational acceler-
ation is altered.™

Alexander noted as well that the trot-to-gallop tran-
sition for quadrupeds occurs at Froude numbers be-
tween 2 and 4, still a fairly specific transition point
considering the size range involved. This is puzzling,
because neither gait involves gravitational energy
storage. The explanation may turn not on the upper
speed limit of trotting but on the lower limit of gallop-
ing—an animal is in free fall for a time within each
stride, and it ought to tolerate a fall of a fixed fraction
of leg length. So gravity can reasonably reenter the
picture. If the period of falling is a fixed fraction of
stride duration and if running speed at transition
varies with leg length times stride frequency (which is
supported by observations),'? then the Froude number
ought to set that transition point.

Walking on water, getting sap up
the tree

For us, water’s high surface tension is a mild nuisance
ordinarily mitigated by a dose of detergent. For other
organisms, typically smaller than we, it can be a
major player in their physical world. Quite a few crea-
tures can walk on water, pressing legs into the inter-

Air

Water
< Figure 3. Walking on water. The schematic

diagram shows legs pressing on the air-
water interface where surface tension is
more than adequate for support (Bond
number Bo < 1), and where the weight of
the animal just reaches the force that can be
sustained by surface tension (Bo = 1).

face and using the upward component of surface ten-
sion for support. But they are mainly insects and
spiders that span a narrow size range of about a milli-
meter to a centimeter or two in length. A pair of di-
mensionless numbers sheds some light on the bounds
of their window of opportunity.

The upper size limit ought to involve, as competing
factors, the upward force of surface tension and the
downward force of gravity. If the animal isn’t to fall
through, the ratio of gravitational force to surface ten-
sion force, the Bond number, should be less than one:
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where y is the surface tension and [ is the wetted pe-
rimeter, which is the length of the air-water-leg inter-
face (figure 3). Assuming unpolluted water, a human
wearing my size 9C sandals could weigh no more than
10 grams to stand or 5 grams (one leg supporting) to
walk. But an insect weighing a tenth of a gram needn’t
be bizarrely shaped—1.3 mm will do for a perimeter,
which a water strider, for instance, can divide among
four contacting legs. A fringe of hydrophobic foot
hairs gives it lots of leeway. For that matter, some
creatures can jump vertically from the surface, which
demands support by an upward force an order of
magnitude greater. Ignoring shape and substituting
density times length cubed for mass shows that the
Bond number varies with length squared. So larger is
very much worse.3
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A Figure 4. Continuous columns of liquid sap, nearly pure water, run up
a tree and connect the water between soil particles with the wet walls
of the cells within the leaves that contact the air. Supporting the
columns of height h, as well as offsetting the pressure losses due to
flow and capillary forces within the soil, requires that the radius of
curvature r of the final air-water interfaces be very small.

What about the lower size limit? Here the problem
isn’t support but locomotion. The water’s surface ten-
sion will pull against an animal whichever way it tries
to move. Can it get enough inertial force to offset the
force of surface tension? Put another way, it needs a
sufficiently high value of the ratio of those forces,
given by the Weber number,

not to find the surface a fatal trap. So the animal has
to be sufficiently large and fast; because size and
speed are ordinarily correlated, that makes real trou-
ble for really tiny creatures. As D’Arcy Thompson, the
greatest prose artist among biologists, put it, “A water
beetle finds the surface of a pool a matter of life and
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death, a perilous entanglement or an indispensable
support.”i*

The interplay of gravity and surface tension may be
still more important in quite a different biological con-
text. The columns of liquid sap within even the tallest
tree extend, uninterrupted by gas, from roots to
leaves. Could capillary rise account for the ascent of
sap? Assuming perfect wetting of the walls of the con-
duits, the upward pressure will be twice the surface
tension divided by conduit radius, so we can write
that Bond number as

Bo = &
2y

For the Bond number not to exceed one with a typical

conduit radius of a twentieth of a millimeter, the rise h
must remain below about 3 m. That wouldn’t be much
of a tree; capillary rise simply won’t do the job.

In the generally accepted picture, columns of sap
are maintained by the considerable internal cohesion
of water, in essence hanging from the tops of trees and
drawn up by evaporative water loss from the leaves,
as in figure 4.1 Putting aside the matter of cohesion,
we can ask how the columns can remain open to the
air at the top. Put another way, we can ask why, since
water vapor quite clearly leaves the leaves, air doesn’t
enter. Here the relevant interfacial radius is much
smaller, about a ten-thousandth of a millimeter for the
pores in the walls of cells within the leaves. With this
radius, the Bond number won’t rise above one and air
won’t be pulled in by gravity until a tree exceeds
1500 meters in height—over an order of magnitude
higher than any tree ever known. So trees are not lim-
ited in height on this account, and they have lots of
margin for pressure losses from flow in the conduits
and from extracting water from soil.

Two matters of circulation

Perhaps nowhere does physics so strongly constrain
the arrangements of organisms as in their systems for
moving fluids through themselves. Surface tension
may play a much smaller role in animals than we
noted in plants, but gravity matters as much to a large,
terrestrial animal as to a tree. And sucking with sub-
ambient pressures is a game played largely by plants,
with their noncollapsible piping; siphoning has been
persuasively excluded even for giraffes and thus most



likely for dinosaurs. So, lacking much in the way of
auxiliary pumps, we need hearts that can pump blood
up to our heads with enough pressure left to drive
blood through arterioles and capillaries. (See the arti-
cle by George J. Hademenos on the physics of cerebral
aneurysms, Physics Today, February 1995, page 24.)

Trouble ensues if an animal has a height, expressed
in units of blood pressure, that exceeds its systolic
blood pressure, the peak output of the left ventricle.
That’s a rough-and-ready criterion: On the one hand,
one’s heart isn’t in one’s feet, and so body height over-
states the hill to be climbed, while on the other hand,
systolic pressure overstates the pressure drop avail-
able to supply the brain. Still, we can define what we
could call “circulatory hazard” as the ratio of mano-
metric height (blood density times gravity times
height) to systolic pressure, and assert that it ought to
stay below one.

What happens in mammals proves intriguing. Most
mammals have about the same resting systolic pres-
sure as we humans—120 mm of mercury, correspond-
ing to a manometric height of about 1.7 m or between
5 and 6 feet. That works for cat, dog or human, but
species much taller than we increasingly depart from
the typical mammalian pressure. Horses run about
180 mm Hg at rest, and giraffes get as high as 300.1° So
humans are near the inflection point where a plot of
manometric height against blood pressure, as in fig-
ure 5, begins to slope upward—as necessary to keep

the circulatory hazard below one. If I stand up sud-
denly after sleeping horizontally, I get a bit dizzy,
which I'm told indicates that I'm not hypertensive.
Our cat should have no such problem.

For aquatic animals, living in a medium near blood
density, height and posture are of little concern, so
whales have normal mammalian pressure and sea
snakes have the normal reptilian pressure of around
40 mm Hg. A terrestrial snake is okay on the ground,
but how can it climb a tree without passing out?
Tree-climbing snakes keep their circulatory hazard
under control by a heroic adjustment—their hearts
are located considerably nearer their front ends. One
wonders about long-necked dinosaurs; they must have
had the fully separate systemic and pulmonary circu-
lations of present birds (and humans), together with
the high pressures of giraffes.'” Physics, again, doesn’t
bend for evolution.

Physiology textbooks often begin their section on
circulatory systems by talking about Bernoulli’s princi-
ple. Only a few ever mention Bernoulli again—proba-
bly a good thing, as we’ll see. Consider what should
happen if a fluid pulses through a pipe with a flexible
wall. Bernoulli’s principle implies lower pressures
with faster flow, so the pipe ought to constrict as the
flow speeds up. Another rule, the Hagen-Poiseuille
equation, predicts the opposite. It describes the pres-
sure necessary to force a laminar flow through a pipe
whose walls exert some resistance, and it makes clear

< Figure 5. Systolic blood pressure as a
function of animal height. The pressure
shows little regular variation among small-
and medium-sized mammals. But it must
(and does) rise in large mammals so that it
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that faster flow requires higher pressure. Is a given
flow Bernoulli dominated or Hagen-Poiseuille domi-
nated? We need do no more than look at their ratio
(using dynamic pressure pv?/2 for the former),

B __ pvr’

HP — 16ul

pvd
H ,

where p and p are the dynamic viscosity and density
of blood, respectively.

For a pipe 100 mm long and 1 mm in diameter car-
rying blood at 100 mm/s, the ratio has a value of about
0.01, indicating that Hagen-Poiseuille is in charge and
Bernoulli has little to say.” Because circulatory systems
have their pipes serially arrayed, the effective lengths
are in practice even longer. In circulatory systems,
Bernoulli’s principle finds use only around heart
valves, at pathological stenoses and in a few other
places. That one’s pulse is felt as an arterial expansion
rather than constriction ought to make the point.
Bernoulli does better in turbulent flow or where (as
in carburetors) the ratio of pipe radius to length is
high. Maybe the terminal ends of the urethras of
large animals are braced, like vacuum-cleaner hoses,
against collapse.

Incidentally, the relationship in the equation above
turns out to be a version of the Reynolds numbery; the
ratio of inertial to viscous forces and the most famous
of all dimensionless numbers in fluid mechanics.

Jets, propellers and wings

Efficiencies are dimensionless indices that establish
limits, usually by setting an ideal of 100%. Perhaps

of more biological interest are places where low
values preclude the use of certain devices. Thus the
maximum thermal efficiency of an engine with a heat
source at 40 °C and a sink at 0 °C—a range that a wet,
proteinaceous organism may achieve—is less than
13%. That nature lacks heat engines should thus be
no surprise.

Consider a device, such as a propeller, that provides
thrust by speeding up a fluid flowing through it from
v,, the craft’s speed, to v,, some output speed. The de-
vice’s thrust is the product of the mass it processes per
unit time and the increase in speed (v, - v,) it imparts.
Its power output is that thrust times the craft’s speed.
Its power input is kinetic energy per unit time, or half
that mass per unit time multiplied by the difference in
the squares of the speed of its output and the craft’s
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speed v,> - v 2 So efficiency, usually called the Froude
propulsion efficiency, is simply’

2y
n= vy +v;

Now v, has to be at least a bit above v, if any thrust is
to be generated, and so 100% efficiency can’t be
reached. But making v, approach v, means processing
the largest possible volume of fluid and giving it the
least increase in speed. That’s a bad indictment of jets
relative to paddles or propellers—a jet ordinarily
gives a smaller mass flux a higher incremental speed.
In this light, it’s understandable that neither Hero’s jet
engine of the first century nor James Rumsey’s pulse-
jet steamboat of 1787 led anywhere."’

But nature makes quite a few jet engines—in jelly-
fish, salps, frogfish, dragonfly nymphs, squid, scallops
and others. They’re probably easy to achieve given
that organisms often push water through themselves
to filter food or gain oxygen, often make one-way
valves, and often wrap muscle around soft tubes.
Aside from squid, though, nature’s large, fast swim-
mers—fish, penguins, seals, whales and such—all use
some form of propeller, like our propellers except for
being oscillatory rather than rotational. Jets lose when
competition between fins or flukes and jets turns on
Froude propulsion efficiency. Squid can go fast—8 m/s
is impressive for foot-long swimmers. But they do so
only briefly, to escape predators or lunge at prey,
when efficiency must matter little, and they use their
fins for steady traveling.’

We have a similarly equivocal attitude toward jets.
No commercially produced cars or motorcycles and
only a few boats use jet engines. We usually reserve
them for high-speed applications since, when push
comes to shove, the jet’s output speed has to be high
enough to exceed the craft’s speed. An exception, the
Harrier jet, a small military aircraft that can take off
vertically and hover, consumes fuel at a notoriously
high rate. One can imagine a birdlike creature that
uses its chest muscles and a pair of one-way valves
to run a pulse-jet engine that provides thrust and re-
spiratory gas exchange at the same time. Birds, in fact,
do pump air through their lungs unidirectionally. But
even the fastest known avian flyer, a falcon diving at
a little over 60 m/s, or 130 mph, is surely too slow to
make good use of the scheme.®



Froude propulsion efficiency exposes yet another
limit, although this one matters mostly for human
technology. Our earliest successful aircraft (ignoring
lighter-than-air fliers) and most of our present ones
get lift from fixed wings and forward propulsion
from propellers or jets. That combination is almost
unknown among birds, bats and insects, which get
both lift and propulsion from pointing a single
thruster in the appropriate direction. The helicopter,
our analog of nature’s fliers, wins no prizes for either
fuel economy or range. Are nature’s fliers as bad?

The utility of fixed wings turns out to depend on
size. The lift of a wing varies with its area, while the
weight of craft to be lifted varies with its volume.
Larger thus means relatively lift-deprived unless
wings are disproportionately large—or unless the
flying machine goes faster. A faster v, demands a
greater v, to generate forward thrust. Lift, of course,
comes from downward thrust, and that’s the crux of
the problem. The vertical speed of an airplane is triv-
ial, so the downward component of v, is negligible. If
the propeller or jet is simply reaimed to get some
downward momentum flux, thenv,, —-v,,  will be
great and the efficiency low. A fixed wing acts as a
transformer, converting some of the high-speed,
low-volume rearward flow from propeller or jet into
a low-speed, high-volume downward flow behind the
wing, and thereby creating lift efficiently.

Nature’s fliers go much more slowly—a bird that
flies horizontally at 30 m/s is remarkable, while an
airplane that flies that slowly is equally special. So
flying animals can achieve adequately high propul-
sion efficiencies without resorting to separate fixed
wings and propellers. Or mostly so, since the inner
portions of the wings of large birds operate nearly as
fixed, horizontal airfoils. The relatively large wings of
nature’s small fliers permit low speeds. Thus, very
small birds can hover steadily, medium-sized ones can
hover only momentarily and large birds can’t hover at
all. The advent of hovering aircraft awaited engines of
very high power-to-weight ratios, and the very slow
human-powered aircraft have gigantic wings.

Dimensionless numbers find use in many other
biological or at least biomechanical situations. Some
are well-established in the physical sciences, where
they get used in much the same fashion; others have
their variables redefined for biological purposes; still
others have been especially contrived. Some set spe-
cific boundaries for the possible; others provide scal-
ing rules that show how the desirable slopes off to-

ward the impractical. Some answer specific questions;
others just head us in some useful direction. Most,
though, involve more complicated stories than

those just related, which merely give the flavor of

the game. PT

References

1. J. D.Isaacs, A. C. Vine, H. Bradner, G. E. Bachus,
Science 151, 682 (1966).

2. R. C. Pankhurst, Dimensional Analysis and Scale
Factors, Chapman and Hall, London (1964).

3. N. S. Land, A Compilation of Dimensionless Num-
bers, NASA, Washington, DC (1972).

4. H. D. Prange, K. Schmidt-Nielsen, J. Exp. Biol. 53,
763 (1970).

5. T. M. Williams, J. Exp. Biol. 103, 155 (1983).

6. K. Schmidt-Nielsen, in Scale Effects in Animal
Locomotion, T. ]. Pedley, ed., London, Academic
Press (1977), p. 3.

7. S.Vogel, Life in Moving Fluids, 2d ed., Princeton U.
P, Princeton, N.J. (1994).

8. G. 0. Stride, Ann. Entomol. Soc. Am. 48, 344 (1955).

9. G.D. W. Pommen, D. A. Craig, Can. J. Zool. 73, 373
(1995).

10. R. M. Alexander, Am. Sci. 72, 348 (1984).

11. R. Kram, A. Domingo, D. P. Ferris, J. Exp. Biol. 200,
821 (1997).

12. N. C. Heglund, C. R. Taylor, J. Exp. Biol. 138, 301
(1988).

13. S. Vogel, Life’s Devices: The Physical World of
Animals and Plants, Princeton U. P., Princeton, N.J.
(1988).

14. D. A. Thompson, On Growth and Form, 2d ed.,
Cambridge U. P, Cambridge, England (1942), p. 77.

15. M. H. Zimmermann, Xylem Structure and the
Ascent of Sap, Springer-Verlag, Berlin (1983).

16. S. Vogel, Vital Circuits: On Pumps, Pipes, and the
Workings of Circulatory Systems, Oxford U. P., New
York (1992).

17. S.Vogel, Cats’ Paws and Catapults: Mechanical
Worlds of Nature and People, W. W. Norton, New
York (1998).

18. V. A. Tucker, T. J. Cade, A. E. Tucker, J. Exp. Biol. 201,
2061 (1998).

Steven Vogel (1940-2015) was a James B. Duke Professor in the
zoology department at Duke University in Durham, North Carolina.

physicstoday.aip.org 41



