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Abstract. An algorithm is developed to generate the equations defining vertical plane curves such that objects placed on them 
experience constant kinematic jerk. Two different types of constant jerk are explored. The first is simply the tangential component 
of the total jerk, and the second is the time rate of change of the magnitude of the tangential component of acceleration. The latter 
corresponds most directly to the notion of changes in the rate of change of speed. The curves so developed were calculated 
numerically and are almost parabolic.  

INTRODUCTION 

What sort of surface curvature results in a constant tangential jerk for a sliding object? This is the question we 
address in this paper. Its answer is not obvious and, as far as we can tell, it is not to be found explicitly within the 
canon of elementary mechanics [1]. If present at all, discussions of jerk in physics textbooks rarely venture much 
beyond its amusing name [2]. This is perhaps surprising since, as the time derivative of acceleration, jerk represents a 
straightforward extension of standard kinematics [3].  

In this contribution, we first seek the vertical plane curve 𝑦𝑦(𝑥𝑥) upon which a sliding object has a tangential jerk of 
constant magnitude, 𝑗𝑗𝑇𝑇. Second, we seek a different vertical plane curve defined by the property that a sliding object 
experiences a tangential acceleration whose magnitude changes linearly with time; that is, 𝑎̇𝑎𝑇𝑇 is constant. It is tempting 
to imagine that these two curves are identical owing to the relationship between jerk and acceleration, but the following 
analysis reveals that they are not. Assuming 𝛼𝛼 represents the local angle of 𝑦𝑦(𝑥𝑥) according to Fig. 1, the total jerk 
𝒋𝒋 =  𝑑𝑑

𝑑𝑑𝑑𝑑
�𝑎𝑎𝑇𝑇𝑻𝑻� + 𝑎𝑎𝑁𝑁𝑵𝑵�� can be simplified via the identities 𝑻𝑻�̇ = ±𝛼̇𝛼𝑵𝑵�  and 𝑵𝑵�̇ = ±𝛼̇𝛼𝑻𝑻� to show that the tangential jerk 𝑗𝑗𝑇𝑇 

is a function of 𝑎̇𝑎𝑇𝑇: 𝒋𝒋 = 𝑎̇𝑎𝑇𝑇𝑻𝑻� + 𝑎𝑎𝑇𝑇𝑻𝑻�̇ + 𝑎̇𝑎𝑁𝑁𝑵𝑵� + 𝑎𝑎𝑁𝑁𝑵𝑵�̇ = (𝑎̇𝑎𝑇𝑇 ± 𝑎𝑎𝑁𝑁𝛼̇𝛼)𝑻𝑻� + (𝑎̇𝑎𝑁𝑁 ± 𝑎𝑎𝑇𝑇𝛼̇𝛼)𝑵𝑵� . 
This demonstrates that 𝑗𝑗𝑇𝑇 = 𝑎̇𝑎𝑇𝑇 ± 𝑎𝑎𝑁𝑁𝛼̇𝛼, so a curve where the quantity 𝑎̇𝑎𝑇𝑇 is constant must differ from one where 

𝑗𝑗𝑇𝑇 is constant. Our purpose in this work is to derive 𝑎̇𝑎𝑇𝑇 and 𝑗𝑗𝑇𝑇, generate 𝑦𝑦(𝑥𝑥) numerically from each expression, and 
further distinguish each curve by exploring their geometric characteristics.  

THEORY 

Tangential Component of Jerk 

We consider an object of constant mass 𝑚𝑚 subject to gravity and a normal force that slides without friction down 
an inclined surface, 𝑦𝑦(𝑥𝑥), having a variable slope (Fig. 1). According to Newton’s second law, the vector sum of these 
forces is proportional to the instantaneous acceleration of the object, 𝒂𝒂��⃗ =  𝑭𝑭

��⃗ net
𝑚𝑚

= 1
𝑚𝑚
�𝑭𝑭��⃗ 𝑁𝑁 + 𝑚𝑚𝒈𝒈��⃗ � = 𝑭𝑭��⃗ 𝑁𝑁

𝑚𝑚
+ 𝒈𝒈��⃗ . 

The normal force 𝑭𝑭��⃗ 𝑁𝑁 can be expressed as 𝑭𝑭��⃗ 𝑁𝑁 = �𝑚𝑚𝑚𝑚 cos𝛼𝛼 + 𝑚𝑚𝑣𝑣2

𝑅𝑅
�𝑵𝑵� . 

 



FIGURE 1. Vertical plane curve 𝑦𝑦(𝑥𝑥) characterized by a variable tangential acceleration. 𝛼𝛼 denotes the local angle of the curve 
and can be related to the geometry of 𝑦𝑦(𝑥𝑥) via sin𝛼𝛼 =  −𝑦𝑦′(𝑥𝑥)

�1+𝑦𝑦′(𝑥𝑥)2
.

By definition, jerk is the time derivative of 𝒂𝒂��⃗ , which gives 

𝒋𝒋 = 𝑑𝑑𝒂𝒂��⃗
𝑑𝑑𝑑𝑑

= 𝑑𝑑
𝑑𝑑𝑑𝑑
� 1
𝑚𝑚
�𝑚𝑚𝑚𝑚 cos𝛼𝛼 + 𝑚𝑚𝑣𝑣2

𝑅𝑅
�𝑵𝑵� + 𝒈𝒈��⃗ � = 𝑑𝑑

𝑑𝑑𝑑𝑑
��𝑔𝑔 cos𝛼𝛼 + 𝑣𝑣2

𝑅𝑅
�𝑵𝑵��, (1) 

where 𝑔𝑔 cos𝛼𝛼 is the normal component of the gravitational acceleration and 𝑣𝑣2/𝑅𝑅 is a speed-dependent centripetal 
acceleration that involves the signed osculating radius 𝑅𝑅. 𝒋𝒋 can be found by rewriting these quantities and the unit 
vectors 𝑻𝑻� and 𝑵𝑵�  in terms of 𝑦𝑦(𝑥𝑥) and its higher-order derivatives, a process available in Appendix A. There we 
demonstrate that jerk resolves into tangential and normal components, 𝒋𝒋 =  𝑗𝑗𝑇𝑇𝑻𝑻� + 𝑗𝑗𝑁𝑁𝑵𝑵� . These components have 
magnitudes 

𝑗𝑗𝑇𝑇 =
−𝑔𝑔𝑔𝑔′′(𝑥𝑥)𝑣𝑣

(1 + 𝑦𝑦′(𝑥𝑥)2)2 − 𝑓𝑓
𝑦𝑦′′(𝑥𝑥)2𝑣𝑣3

(1 + 𝑦𝑦′(𝑥𝑥)2)3 (2) 
and 

𝑗𝑗𝑁𝑁 = 𝑓𝑓𝑣𝑣3�𝑦𝑦′′(𝑥𝑥)2

(1+𝑦𝑦′(𝑥𝑥)2)2
�−2𝑔𝑔𝑔𝑔′(𝑥𝑥)

𝑣𝑣2
+ 𝑦𝑦′′′(𝑥𝑥)+𝑦𝑦′′′(𝑥𝑥)𝑦𝑦′(𝑥𝑥)2−3𝑦𝑦′(𝑥𝑥)𝑦𝑦′′(𝑥𝑥)2

𝑦𝑦′′(𝑥𝑥)(1+𝑦𝑦′(𝑥𝑥)2)
� − 𝑔𝑔𝑦𝑦′(𝑥𝑥)𝑦𝑦′′(𝑥𝑥)𝑣𝑣

(1+𝑦𝑦′(𝑥𝑥)2)2
, (3) 

where the factor 𝑓𝑓 = ±1 is introduced to account for the sign of the osculating radius according to the conventions in 
Appendix B. The derivation of the normal component jerk is highly involved, as it includes the derivative of an 
absolute value function and a third derivative of 𝑦𝑦(𝑥𝑥). For the sake of simplicity and because it is not our primary 
focus, we simply report the result here. 

Time-Dependent Tangential Acceleration 

In contrast to Eqs. (2) and (3), the derivation of 𝑎̇𝑎𝑇𝑇 is straightforward and starts with the well-known expression 
for the tangential acceleration on an inclined surface,  

𝑎𝑎𝑇𝑇 = 𝑔𝑔 sin𝛼𝛼 = 𝑑𝑑2𝑠𝑠
𝑑𝑑𝑡𝑡2

= −𝑔𝑔𝑔𝑔′(𝑥𝑥)
�1+𝑦𝑦′(𝑥𝑥)2

. 
(4) 

By taking advantage of the relationship between 𝛼𝛼 and the geometry of 𝑦𝑦(𝑥𝑥) and using implicit differentiation, 𝑎̇𝑎𝑇𝑇 can 
be calculated as the time derivative of Eq. (4), 

𝑎̇𝑎𝑇𝑇 = 𝑑𝑑𝑎𝑎𝑇𝑇
𝑑𝑑𝑑𝑑

= 𝑑𝑑3𝑠𝑠
𝑑𝑑𝑡𝑡3

= −𝑔𝑔𝑦𝑦′′(𝑥𝑥)𝑣𝑣
(1+𝑦𝑦′(𝑥𝑥)2)2

. 
(5) 

As noted earlier, 𝑎̇𝑎𝑇𝑇 and 𝑗𝑗𝑇𝑇 are related to each other in a nontrivial way. This relationship is explained in detail in 
terms of 𝑦𝑦(𝑥𝑥) and physical quantities in Appendix C. 



(a) 

Numerical Solutions 

The surfaces we seek are 𝑦𝑦(𝑥𝑥) solutions to Eq. (2) for a constant value of 𝑗𝑗𝑇𝑇 or solutions to Eq. (5) for a constant 
value of 𝑎̇𝑎𝑇𝑇. It seems highly unlikely that analytical solutions exist, but both equations are well suited to be solved 
with numerical methods. In particular, Eq. (2) can be rearranged to a convenient quadratic form with respect to 𝑦𝑦′′(𝑥𝑥), 
which provides an expression for 𝑦𝑦′′(𝑥𝑥) through the quadratic formula. After simplification, we have  

𝑦𝑦′′(𝑥𝑥) = 1+𝑦𝑦′(𝑥𝑥)2

2𝑓𝑓𝑣𝑣2
�−𝑔𝑔 + �𝑔𝑔2 − 4𝑓𝑓𝑓𝑓(1 + 𝑦𝑦′(𝑥𝑥)2)𝑗𝑗𝑇𝑇�. 

(6) 

At the same time, the 𝑎̇𝑎𝑇𝑇 equation, Eq. (5), can be rearranged to give 

𝑦𝑦′′(𝑥𝑥) = −𝑎̇𝑎𝑇𝑇
𝑔𝑔𝑔𝑔

(1 + 𝑦𝑦′(𝑥𝑥)2)2. 
(7) 

Because of the 𝑦𝑦 dependence of speed under conservation of energy, speed can be expressed as 𝑣𝑣 =
�𝑣𝑣02 + 2𝑔𝑔(𝑦𝑦0 − 𝑦𝑦(𝑥𝑥)) and Eqs. (6) and (7) can each be recast as a set of coupled, autonomous differential equations 
𝑢𝑢(𝑥𝑥) = 𝑦𝑦′(𝑥𝑥) and 𝑢𝑢′(𝑥𝑥) = 𝑦𝑦′′(𝑥𝑥), which we have solved by implementing a fourth-order Runge-Kutta algorithm. In 
both cases, these systems of equations are autonomous, meaning that their solution requires no explicit reference to 
time. We implemented the RK4 solution to these systems in an open-source software package named Jcurve, which 
also offers more tools to explore and analyze the resulting surfaces [4].  

RESULTS AND DISCUSSION 

We have applied Jcurve to two cases of constant 𝑗𝑗𝑇𝑇 and constant 𝑎̇𝑎𝑇𝑇. Case A represents a curve with a positive 𝑗𝑗𝑇𝑇 
and 𝑎̇𝑎𝑇𝑇 and the initial conditions 𝑎̇𝑎𝑇𝑇 , 𝑗𝑗𝑇𝑇 = 2 m/s3, 𝑎𝑎0 = 0, and 𝑣𝑣0 = 1 m/s. Case B exemplifies a curve with a 
negative 𝑗𝑗𝑇𝑇 and 𝑎̇𝑎𝑇𝑇 and the initial conditions 𝑎̇𝑎𝑇𝑇 , 𝑗𝑗𝑇𝑇 = −4 m/s3, 𝑎𝑎0 = 7 m/s2, and 𝑣𝑣0 = 0.001 m/s (this speed was 
chosen instead of 𝑣𝑣0 = 0 to avoid numerical instability). The resulting curves are displayed in Fig. 2. 

(b) (c) 

(d) (e) (f)



FIGURE 2. 𝑦𝑦(𝑥𝑥) surfaces from cases A and B. (a) Curves with a constant 𝑎̇𝑎𝑇𝑇 and 𝑗𝑗𝑇𝑇 of 2 m/s3 (only 22 m of the curves’ 
horizontal length are displayed, but they extend further). These surfaces are concave-down and nearly parabolical, as the best-fit 
parabolas match the numerically calculated curves with an 𝑅𝑅2 score of 𝑅𝑅2 = 0.99985 for the 𝑗𝑗𝑇𝑇 curve and 𝑅𝑅2 = 0.99983 for the 
𝑎̇𝑎𝑇𝑇 curve. (b) Critical behavior of case A 𝑗𝑗𝑇𝑇 surface. As the object slides down the curve, there is a point where the gravitational 
acceleration is insufficient to keep the object in contact with the surface; we refer to this location as the divergence point 𝑥𝑥div. 

For the 𝑗𝑗𝑇𝑇 curve, the object diverges from 𝑦𝑦(𝑥𝑥) at 𝑥𝑥div = 34.52 m at a speed 𝑣𝑣 = 25.04 m/s. (c) Critical behavior of case A 𝑎̇𝑎𝑇𝑇 
surface. This surface has a divergence point 𝑥𝑥div = 19.50 m where the object enters free fall at 𝑣𝑣 = 16.70 m/s. (d) Curves with 
a constant 𝑎̇𝑎𝑇𝑇 and 𝑗𝑗𝑇𝑇 of −4 m/s3 (only 13.5 m of the curves’ horizontal length are shown). These surfaces are concave-up and 

can be approximated with a parabola, achieving 𝑅𝑅2 = 0.99623 for the 𝑗𝑗𝑇𝑇 curve and 𝑅𝑅2 = 0.99601 for the 𝑎̇𝑎𝑇𝑇 curve. (e) Critical 
behavior of case B 𝑗𝑗𝑇𝑇 curve. Surfaces with negative jerk have a critical minimum instead of a divergence point; for this curve, 

𝑥𝑥min = 9.30 m. (f) Critical behavior of case B 𝑎̇𝑎𝑇𝑇 curve. This surface reaches its critical minimum at 𝑥𝑥min = 6.81 m. 

Figure 2 shows interesting features of the 𝑦𝑦(𝑥𝑥) surfaces we sought. On one hand, curves with a positive 𝑗𝑗𝑇𝑇 or 𝑎̇𝑎𝑇𝑇 
possess a divergence point after which the sliding object enters free fall. In case A, the divergence point of the constant-
𝑗𝑗𝑇𝑇 curve is 77% further away from the start of the trajectory than that of the constant 𝑎̇𝑎𝑇𝑇 curve. This large difference 
in divergence values belies how close the curves track each other for the first 10 m or so, as shown in Fig. 2(a). Only 
when the curve becomes steep and the normal component of acceleration changes quickly do they differ significantly. 
On the other hand, curves with a negative 𝑗𝑗𝑇𝑇 or 𝑎̇𝑎𝑇𝑇 do not have divergence points, but they bottom out and reverse 
direction. In case B, the location of the critical minima is affected by the horizontal length of each curve. Owing to 
the high initial acceleration and the corresponding rapid change in the magnitude of normal acceleration in case B, the 
𝑗𝑗𝑇𝑇 and 𝑎̇𝑎𝑇𝑇 curves diverge almost immediately, so they reach different horizontal extensions and drag the minimum 
point accordingly. 

In both cases A and B, surfaces generated with constant 𝑗𝑗𝑇𝑇 do not bend as much as those with the same value of 
constant 𝑎̇𝑎𝑇𝑇; they do not need to. For the former, the tangential jerk caused by the curvature is augmented by the 
tangential component of the derivative of the acceleration perpendicular to the curve. We encourage the reader to 
examine Appendix D, where the components of jerk for each surface are displayed and this relationship is better 
depicted. The plots in this appendix also shine a light on a characteristic of tangential and scalar jerk that may not 
come as a surprise: surfaces defined by constant 𝑗𝑗𝑇𝑇 are marked by varying 𝑎̇𝑎𝑇𝑇 and vice versa.  

The surfaces in both cases A and B, as well as every other curve we tested, are nearly parabolic. Almost an exact 
agreement can be reached between the numerical curve and polynomials as high as fifth order in all the cases we 
studied, but of course, that does not mean anything about the nature of constant-jerk curves except that they are well 
behaved. Slightly better agreement is achieved when the curves are fit to a flattened catenary; again, however, this 
agreement is imperfect. One might hope for an analytical curve that confers this type of motion, similar to how the 
cycloid corresponds to brachistochrone curves, but our results suggest no such surface exists. 

CONCLUSION 

Our question has been answered: inclined surfaces producing constant tangential jerk are curved in a way that is 
almost parabolic. There may be no simple explanation for this except to follow the mathematics, which is not 
particularly satisfying. A natural follow-up question might concern how the shape of a constant-tangential-jerk surface 
is different if an object rolls without slipping rather than sliding down it. In fact, it is straightforward to move beyond 
a frictionless scenario to incorporate rolling into this kind of analysis.  
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APPENDIX A 

Starting with the definition of jerk established in Eq. (1), we make use of use the identities sin 𝛼𝛼 = −𝑦𝑦′(𝑥𝑥)
�1+𝑦𝑦′(𝑥𝑥)2

 and 

cos𝛼𝛼 =  1
�1+𝑦𝑦′(𝑥𝑥)2

, to get 

 
 

𝒋𝒋 = 𝑑𝑑𝒂𝒂��⃗
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�1+𝑦𝑦′(𝑥𝑥)2

+ 𝑣𝑣2

𝑅𝑅
� + � 𝑔𝑔

�1+𝑦𝑦′(𝑥𝑥)2
+ 𝑣𝑣2
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� 𝑑𝑑𝑵𝑵

�

𝑑𝑑𝑑𝑑
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In this representation, the normal and tangential unit vectors are  
 

𝑵𝑵� =
−𝑦𝑦′(𝑥𝑥)𝒊̂𝒊 + 𝒋𝒋̂

�1 + 𝑦𝑦′(𝑥𝑥)2
  and  𝑻𝑻� =

𝒊̂𝒊 + 𝑦𝑦′(𝑥𝑥)𝒋𝒋̂

�1 + 𝑦𝑦′(𝑥𝑥)2
.   

 
Making use of the implicit differentiation of 𝑦𝑦(𝑥𝑥), 
 

𝑑𝑑𝑑𝑑(𝑥𝑥)
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�1+𝑦𝑦′(𝑥𝑥)2
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it can easily be seen that 
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� 1
�1+𝑦𝑦′(𝑥𝑥)2

� 𝒋𝒋̂ = 𝑦𝑦′′(𝑥𝑥)𝑣𝑣

(1+𝑦𝑦′(𝑥𝑥)2)
3
2
�−𝑻𝑻��. 

 
Therefore, Eq. (8) resolves into components 𝒋𝒋 = 𝑗𝑗𝑇𝑇𝑻𝑻�+𝑗𝑗𝑁𝑁𝑵𝑵� , where 
 

 𝑗𝑗𝑇𝑇 = −� 𝑔𝑔
�1+𝑦𝑦′(𝑥𝑥)2

+ 𝑣𝑣2

𝑅𝑅
� 𝑦𝑦′′(𝑥𝑥)𝑣𝑣

(1+𝑦𝑦′(𝑥𝑥)2)
3
2
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and 
 

 𝑗𝑗𝑁𝑁 = 𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝑔𝑔
�1+𝑦𝑦′(𝑥𝑥)2
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𝑅𝑅
�.   

(10) 
 
To simplify Eqs. (9) and (10), it is necessary to introduce the explicit formula for the reciprocal of the osculating 
radius 𝑅𝑅, 
 

 1
𝑅𝑅

= 𝑓𝑓
|𝑣𝑣|
�𝑑𝑑𝑻𝑻
�

𝑑𝑑𝑑𝑑
� = 𝑓𝑓 � 𝑦𝑦′′(𝑥𝑥)

(1+𝑦𝑦′(𝑥𝑥)2)
3
2
�, 

 
(11) 

 
where factor 𝑓𝑓 = ±1 is related to the sign of 𝑅𝑅. Substituting this equation into Eq. (9), we obtain the expression for 
the magnitude of the tangential component of jerk, 
 

𝑗𝑗𝑇𝑇 = −𝑔𝑔𝑔𝑔′′(𝑥𝑥)𝑣𝑣
(1+𝑦𝑦′(𝑥𝑥)2)2

− 1
𝑅𝑅
� 𝑦𝑦′′(𝑥𝑥)𝑣𝑣3

(1+𝑦𝑦′(𝑥𝑥)2)
3
2
� = −𝑔𝑔𝑔𝑔′′(𝑥𝑥)𝑣𝑣

(1+𝑦𝑦′(𝑥𝑥)2)2
− 𝑓𝑓 𝑦𝑦′′(𝑥𝑥)2𝑣𝑣3

(1+𝑦𝑦′(𝑥𝑥)2)3
. 
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TABLE 1. Conventions relating the sign of the osculating radius 𝑅𝑅 to the value of 𝑓𝑓. 

 

𝑅𝑅 𝒇𝒇 Related Quantities Scenario 

𝑅𝑅 > 0 1 𝑦𝑦′′(𝑥𝑥) > 0 
𝑗𝑗𝑇𝑇 < 0 

 

𝑅𝑅 < 0 −1 𝑦𝑦′′(𝑥𝑥) < 0 
𝑗𝑗𝑇𝑇 > 0 

 

𝑅𝑅 → ∞ 1 𝑦𝑦′′(𝑥𝑥) = 0 
𝑗𝑗𝑇𝑇 = 0 
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The expression for 𝑎̇𝑎𝑇𝑇,  
𝑎̇𝑎𝑇𝑇 = 𝑑𝑑𝑎𝑎𝑇𝑇

𝑑𝑑𝑑𝑑
= 𝑑𝑑3𝑠𝑠

𝑑𝑑𝑡𝑡3
= −𝑔𝑔𝑦𝑦′′(𝑥𝑥)𝑣𝑣

(1+𝑦𝑦′(𝑥𝑥)2)2
 , 

 
is clearly the first term in the expression for 𝑗𝑗𝑇𝑇, Eq. (2), a fact that lays bare the close relationship between constant-
𝑗𝑗𝑇𝑇 curves and constant-𝑎̇𝑎𝑇𝑇 curves while demonstrating conclusively that they are not the same. It can be proved that 
the second term in Eq. (2), which accounts for the difference in 𝑎̇𝑎𝑇𝑇 and 𝑗𝑗𝑇𝑇, is the tangential component of the time 
derivative of the normal (radial) component of acceleration, 𝑎𝑎𝑁𝑁𝑵𝑵� , 
 

𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑎𝑎𝑁𝑁𝑵𝑵�� = 𝑑𝑑𝑎𝑎𝑁𝑁

𝑑𝑑𝑑𝑑
𝑵𝑵� + 𝑎𝑎𝑁𝑁

𝑑𝑑𝑵𝑵�

𝑑𝑑𝑑𝑑
= 𝑑𝑑𝑎𝑎𝑁𝑁

𝑑𝑑𝑑𝑑
𝑵𝑵� − 𝑎𝑎𝑁𝑁

𝑦𝑦′′(𝑥𝑥)𝑣𝑣

(1+𝑦𝑦′(𝑥𝑥)2)
3
2
𝑻𝑻�. 

 
Using the reciprocal of the osculating radius, Eq. (11), the tangential component becomes 
 

−𝑣𝑣2

𝑅𝑅
𝑦𝑦′′(𝑥𝑥)𝑣𝑣

(1+𝑦𝑦′(𝑥𝑥)2)
3
2
𝑻𝑻� = − � 𝑦𝑦′′(𝑥𝑥)

(1+𝑦𝑦′(𝑥𝑥)2)
3
2
� 𝑦𝑦′′(𝑥𝑥)𝑣𝑣3

(1+𝑦𝑦′(𝑥𝑥)2)
3
2
𝑻𝑻� = −𝑓𝑓 𝑦𝑦′′(𝑥𝑥)2𝑣𝑣3

(1+𝑦𝑦′(𝑥𝑥)2)3
𝑻𝑻�, 

 
whose magnitude is evidently the second term of 𝑗𝑗𝑇𝑇.  
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FIGURE 3. Dynamical data of case A curves. (a) Magnitudes of 𝑗𝑗𝑇𝑇, 𝑗𝑗𝑁𝑁, and 𝑎̇𝑎𝑇𝑇 for constant-𝑗𝑗𝑇𝑇 curve. (b) Magnitudes of 𝑗𝑗𝑇𝑇, 𝑗𝑗𝑁𝑁, 
and 𝑎̇𝑎𝑇𝑇 for constant-𝑎̇𝑎𝑇𝑇 curve. (c) |𝒂𝒂��⃗ | and |𝒋𝒋| for constant-𝑗𝑗𝑇𝑇 curve. (d) |𝒂𝒂��⃗ | and |𝒋𝒋| for constant-𝑎̇𝑎𝑇𝑇 curve. 

 

 
 

 

(a) (b) 

(c) (d) 

(a) (b) 



 
 
 

FIGURE 4. Dynamical data of case B curves. (a) Magnitudes of 𝑗𝑗𝑇𝑇, 𝑗𝑗𝑁𝑁, and 𝑎̇𝑎𝑇𝑇 for constant-𝑗𝑗𝑇𝑇 curve. (b) Magnitudes of 𝑗𝑗𝑇𝑇, 𝑗𝑗𝑁𝑁, 
and 𝑎̇𝑎𝑇𝑇 for constant-𝑎̇𝑎𝑇𝑇 curve. (c) |𝒂𝒂��⃗ | and |𝒋𝒋| for constant-𝑗𝑗𝑇𝑇 curve. (d) |𝒂𝒂��⃗ | and |𝒋𝒋| for constant-𝑎̇𝑎𝑇𝑇 curve. 
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FIGURE 5. Evolution of 𝒂𝒂��⃗  and 𝒋𝒋 along 10 𝑚𝑚 of case A curves. (a) 𝒂𝒂��⃗  and 𝒋𝒋 at 𝑥𝑥 = 2 𝑚𝑚 for 𝑗𝑗𝑇𝑇 curve. (b) 𝒂𝒂��⃗  and 𝒋𝒋 at 𝑥𝑥 = 4 𝑚𝑚 for 𝑗𝑗𝑇𝑇 
curve. (c) 𝒂𝒂��⃗  and 𝒋𝒋 at 𝑥𝑥 = 6 𝑚𝑚 for 𝑗𝑗𝑇𝑇 curve. (d) 𝒂𝒂��⃗  and 𝒋𝒋 at 𝑥𝑥 = 2 𝑚𝑚 for 𝑎̇𝑎𝑇𝑇 curve. (e) 𝒂𝒂��⃗  and 𝒋𝒋 at 𝑥𝑥 = 4 𝑚𝑚 for 𝑎̇𝑎𝑇𝑇 curve. (d) 𝒂𝒂��⃗  and 𝒋𝒋 

at 𝑥𝑥 = 6 𝑚𝑚 for 𝑎̇𝑎𝑇𝑇 curve. 
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FIGURE 6. Evolution of 𝒂𝒂��⃗  and 𝒋𝒋 along 10 𝑚𝑚 of case B curves. (a) 𝒂𝒂��⃗  and 𝒋𝒋 at 𝑥𝑥 = 2 𝑚𝑚 for 𝑗𝑗𝑇𝑇 curve. (b) 𝒂𝒂��⃗  and 𝒋𝒋 at 𝑥𝑥 = 4 𝑚𝑚 for 𝑗𝑗𝑇𝑇 
curve. (c) 𝒂𝒂��⃗  and 𝒋𝒋 at 𝑥𝑥 = 6 𝑚𝑚 for 𝑗𝑗𝑇𝑇 curve. (d) 𝒂𝒂��⃗  and 𝒋𝒋 at 𝑥𝑥 = 2 𝑚𝑚 for 𝑎̇𝑎𝑇𝑇 curve. (e) 𝒂𝒂��⃗  and 𝒋𝒋 at 𝑥𝑥 = 4 𝑚𝑚 for 𝑎̇𝑎𝑇𝑇 curve. (d) 𝒂𝒂��⃗  and 𝒋𝒋 

at 𝑥𝑥 = 6 𝑚𝑚 for 𝑎̇𝑎𝑇𝑇 curve. 
 

(a) (d) 

(b) (e) 

(c) (f) 
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