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When we first hear of it, the ‘‘twin paradox’’ of special relativity can 
be a real puzzler, and it can remain unsettling even after one has 
passed a special relativity course. This article describes the 
situation that creates the apparent paradox, identifies the implicit 
but incorrect assumption that makes the paradox seem serious, 
and offers a resolution.1 I assume the reader is familiar with a few 
basic principles of special relativity, including the invariance of the 
speed of light in a vacuum, spacetime diagrams, proper time, time 
dilation, and the invariance of the spacetime interval. 
  I’ll borrow a vivid mental picture from Taylor and 
Wheeler’s Spacetime Physics by imagining two inertial reference 
frames: the lab frame that uses coordinates (𝑡𝑡𝑡 𝑡𝑡𝑡, and the coasting 
rocket frame that employs coordinates (𝑡𝑡′,𝑥𝑥 ′). Let the coasting 
rocket frame move with constant velocity 𝑣𝑣 relative to the lab 
frame. The coasting rocket’s world line from event A to some event 
B, as plotted in the spacetime diagram of the lab frame, is shown 
in Fig. 1. To record times, arrays of clocks synchronized within each 
frame are set to read zero at event A, where the origins of both 
coordinate systems coincide.2 It is crucial to realize that the world 
line AB of the coasting rocket forms the 𝑡𝑡𝑡𝑡axis of the coasting 
rocket frame’s coordinate system. Because the speed of light 𝑐𝑐 is 
invariant, 𝑐𝑐 𝑐 𝑐𝑐𝑐 𝑐𝑐𝑐⁄ =∆𝑥𝑥𝑥𝑥𝑥𝑥𝑥  ⁄ , it follows that the world line of a 
light ray emitted from event A lies halfway between the space and 
time axes when those axes are measured in the same units. In this 
discussion, time will be measured in years and distances in light-
years. Therefore, when we project the rocket’s (𝑡𝑡′,𝑥𝑥 ′) axes onto 
the (𝑡𝑡𝑡 𝑡𝑡𝑡 axes, the world line of the light ray is halfway between 
the 𝑡𝑡𝑡 and the 𝑥𝑥′ axes, and halfway between the 𝑡𝑡 and 𝑥𝑥 axes. 
Notice that event B in the rocket frame is simultaneous with event 
C in the lab frame, as shown in Fig. 1. This is so because the line 
BC is a spacelike interval in the rocket frame-----line BC is parallel 
to the 𝑥𝑥′-axis in Fig. 1. But for the lab observer, event C is 
simultaneous with other events, such as event E in the coasting 
rocket frame. 

  
FFiigguurree  11..  The world line AB of the coasting rocket as mapped in the lab 
frame’s spacetime diagram. The red line that is halfway between the 
(𝑡𝑡𝑡 𝑡𝑡𝑡 and (𝑡𝑡′,𝑥𝑥 ′) axes represents the world line of a beam of light that 
was emitted from event A. Lines that are parallel to their respective 𝑥𝑥 and 
𝑥𝑥′ axes describe spacelike intervals, and events on these lines are 
simultaneous in their respective frames. 
 

TThhee  PPaarraaddooxx----------AAnndd  IIttss  RReessoolluuttiioonn  

 
 A set of twins, Bonnie and Clyde, is born on Earth (the lab frame). 
They live on Earth for 20 years, at which time Clyde embarks on a 
journey in his spaceship (the coasting rocket frame) to the star 
Zeta that, in the Earth’s reference frame, is three light-years (3 c-
yr) from Earth. Clyde promises to return to Earth as soon as he 
reaches Zeta and to do so at the same speed as the outbound trip. 

Suppose this speed is 𝑣𝑣 𝑣 3
5
𝑐𝑐 relative to Bonnie. Therefore  
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Let the Earth-lab frame be an inertial reference frame,3 and let the 
lab’s x-axis be the line from Earth to Zeta. Let Clyde’s driver’s seat 
define the coasting rocket frame’s origin, 𝑥𝑥′ = 0, with the 𝑥𝑥𝑥-axis 
parallel to the 𝑥𝑥-axis. 
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  Event A in Figs. 1 and 2(a) denotes the event where Clyde 
departs from the Earth. For event A, we have, respectively, the lab 
frame and coasting rocket frame coordinates (𝑡𝑡�, 𝑥𝑥�) =
(𝑡𝑡𝑡�, 𝑥𝑥𝑥�) = (0,0). Let event Z denote the event where Clyde arrives 
at star Zeta. Event Z occurs in Bonnie’s frame at 𝑥𝑥� = 3 𝑐𝑐𝑐𝑐𝑐 and 
𝑡𝑡� = ∆𝑥𝑥 𝑥𝑥⁄ = 3 𝑐𝑐𝑐𝑐𝑐 (3𝑐𝑐𝑐𝑐) = 5 ⁄ yr. Meanwhile, 𝑥𝑥𝑥� = 0, because 
in Clyde’s coordinate system, the star Zeta came to him, arriving 
at the rocket frame’s origin. Clyde measures proper time4 between 
events A and Z, so the time dilation relation 𝑡𝑡� = 𝛾𝛾𝛾𝛾𝛾� becomes 
5 yr = (5 4) 𝑡𝑡𝑡�⁄ , which gives 𝑡𝑡𝑡� = 4 yr. The upshot is that 
between events A and Z, Bonnie ages five years according to her 
clocks, and Clyde ages four years according to his wristwatch. On 
the return trip, because the distances and speeds are the same as 
on the outbound trip, when Clyde returns 
to Bonnie at the reunion event R, Bonnie 
will be 30 years old and Clyde’s age will be 
28 years. So far, so good. 
  The apparent paradox arises 
when all of these events are examined 
from Clyde’s reference frame. In the 
coasting rocket frame, in mapping events 
from A to Z, Clyde sees the Earth and 
Bonnie receding from him, and Zeta 
approaching with velocity − 3𝑐𝑐 𝑐⁄ . Then 
from event Z to the reunion event R, Clyde 
observes Zeta receding and Bonnie 
approaching him at velocity +3𝑐𝑐 𝑐⁄ . One 
might be forgiven for assuming that upon 
Bonnie’s return to Clyde, as observed by 
Clyde, she will be 28 and Clyde will be 30 
years old. Hence the paradox: How can 
Clyde and Bonnie be both 28 and 30 years 
old? 
  The motion just described seems 
at first glance to be symmetrical, as shown 
by comparing Figs. 2(a) and 2(b)—
shouldn’t Clyde’s motion as mapped in 
Bonnie’s (𝑡𝑡𝑡𝑡𝑡𝑡  spacetime diagram [Fig. 
2(a)] be symmetrical with Bonnie’s motion 
as mapped in Clyde’s (𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 spacetime 
diagram [Fig. 2(b)]? 
  As in all paradoxes that arise in 
special relativity, some unconscious 
assumption is made that contradicts the 
theory’s postulates. Special relativity 
applies to inertial reference frames only-----
frames that undergo no acceleration. In 
the twin paradox, Clyde undergoes an 
acceleration. Relative to Bonnie, at event 
Z, his velocity changes from +3𝑐𝑐 𝑐⁄  to 

− 3𝑐𝑐 𝑐⁄ . Throughout all of the events cited, Bonnie never 
accelerates. At event Z, Clyde jumps from the rocket frame, with 
its coordinates (𝑡𝑡′, 𝑥𝑥′) that moves with velocity +3 𝑐𝑐 𝑐⁄  relative to 
the Earth frame, and boards the return rocket frame with 
coordinates (𝑡𝑡′′, 𝑥𝑥′′) that moves with velocity −3𝑐𝑐 𝑐⁄  relative to the 
Earth frame.5 Figure 2(b) is misleading because it suggests that 
Bonnie undergoes an acceleration when, in fact, she does no such 
thing. It is Clyde’s acceleration at event Z that makes Bonnie’s 
world line reverse direction in Fig. 2(b).  
  Referring to Fig. 3 now, a few noteworthy events occur 
simultaneously with event Z. Figure 3 maps the spacetimes of the 
outgoing coasting rocket frame’s (𝑡𝑡′, 𝑥𝑥′) axes and the return rocket 
frame’s (𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡 axes, both projected onto the Earth-lab frame’s 

 
(a)       (b) 

 
FFiigguurree  22..  (a) The motion of Bonnie and Clyde as plotted on Bonnie’s earth frame spacetime axes from 
event A to event R.  (b) The motion of Bonnie and Clyde as plotted on Clyde’s coasting rocket frame 
spacetime axes.  Figure 2(b) motivates a false assumption, giving rise to the paradox. 

 
FFiigguurree  33..  The earth-lab frame (𝑡𝑡𝑡𝑡𝑡𝑡 , coasting rocket frame (𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 and return rocket frame (𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡 
coordinate axes.  Bonnie’s world line goes from A to R along the t-axis in the lab frame.  Clyde’s world 
line goes from A to Z in the coasting rocket frame, then from Z to R in the return rocket frame.  In the 
coasting rocket frame, events Z and C are simultaneous (line CZ is parallel to the x’-axis).  In the return 
rocket frame, events Z and D are simultaneous (line ZD is parallel to the x’’ axis).  The time between 
events C and D is the simultaneity gap. (The coasting rocket origin is placed on the red world line of 
light to show that the angles between it and the t’’ and x’’ axes are the same.)   
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(𝑡𝑡, 𝑥𝑥) axes. Recall that event Z occurs at 𝑡𝑡� = 5 yr in Bonnie’s 
frame but in Clyde’s frame, 𝑡𝑡′� = 4 yr. Furthermore, in Clyde’s 
frame event Z is simultaneous with an event C that occurs in 
Bonnie’s frame. We can find Bonnie’s clock time for event C using 
time dilation: When Clyde’s clock reads 𝑡𝑡′� = 4 yr, according to 
Bonnie, who reads proper time between events A and C (because 
both occur at 𝑥𝑥 = 0), her clocks record 𝑡𝑡� =  4 yr 𝛾𝛾 = 3.2 yr.⁄  

In addition, at event Z Clyde jumps from the coasting 
rocket frame to the return rocket frame. Within the return rocket 
frame, event Z is also simultaneous with event D on Bonnie’s world 
line in the lab frame! When Clyde jumps from the rocket frame to 
the return rocket frame at event Z, the time interval between 
events C and D on Bonnie’s world line introduces a simultaneity 
gap. Since event C occurred 3.2 years after event A according to 
Bonnie’s clocks, event D in Bonnie’s frame occurs 3.2 years before 
the reunion at event R, 𝑡𝑡� = 10 − 3.2 = 6.8 years. The magnitude 
of the simultaneity gap as measured by Bonnie’s clocks is 𝑡𝑡� −
𝑡𝑡� = 6.8 − 3.2 = 3.6 years. 

Meanwhile, using data available to him aboard his rocket 
frame (presumably Clyde knew the 3 c-yr distance between Earth 
and Zeta before he left Earth), Clyde knows that when he rejoins 
Bonnie at the reunion event R, she will have aged 10 years 
according to her clocks. To see how he knows this, apply the 
invariance of the spacetime interval,  

𝑐𝑐2(∆𝑡𝑡′)2 − (∆𝑥𝑥′)2 = 𝑐𝑐2(∆𝑡𝑡)2 − (∆𝑥𝑥)2,  (2)

to the first half of the journey, from event A to event Z. Inserting A-
to-Z data, Eq. (2) can be solved for Bonnie’s time ∆𝑡𝑡: 

𝑐𝑐2(4 yr)2 − (0)2 = 𝑐𝑐2(∆𝑡𝑡)2 − (3 𝑐𝑐 yr)2,  (3) 

which gives ∆𝑡𝑡 = 5 yr halfway through, so that Clyde can predict 
that at event R, Bonnie will have aged 10 years according to her 
calendar. 

At the reunion event R, Bonnie will have celebrated ten 
birthdays since event A and Clyde will have celebrated eight 
birthdays since event A. The ‘‘twin paradox’’ seems paradoxical 
because the scenario’s description implicitly assumes that both 
Bonnie and Clyde are always in their respective inertial reference 
frame for all events between A and R. Bonnie does indeed remain 
in one and only one inertial lab frame all the way from A to R, but 
Clyde’s transition from the coasting rocket frame to the return 
rocket frame disqualifies him from being in the same inertial frame 
from A to R. In addition, the simultaneity gap illustrates the 
robustness of Albert Einstein’s original thought experiment about 
the relativity of time as approached through the noninvariance of 
simultaneity.6 

Seeing them reunited at event R, let us toast Bonnie and 
Clyde on their reunion after Clyde’s voyage and raise another 18 
toasts to their ten and eight birthdays, respectively! 

EEnnddnnootteess  

1. Practically every textbook on special relativity describes the twin
paradox. See, for example, John Brehm and William Mullin’s
Introduction to the Structure of Matter (Wiley, 1988)-----I have
borrowed their numerical parameters because they result in
especially simple calculations; Edwin Taylor and John A. Wheeler‘s
Spacetime Physics (Freeman, 1966, 1992); Anthony French’s
Special Relativity (Norton, 1968); and Paul Tipler and Ralph
Llewellyn’s Modern Physics, 5th ed. (Freeman, 1988); among many
others.
2. The clocks at different locations within a given inertial frame can
be synchronized as follows: Set a clock reading zero at the origin,
clocks at 𝑥𝑥 =  ±1 m reading 𝑡𝑡 =  1m 𝑐𝑐⁄ , and so on, but do not let
the clocks run yet. When all necessary clocks are arranged, send
a light pulse from the origin, and when that light reaches a clock,
it begins running. In this way, all the clocks distributed across the
x-axis will be synchronized. Events throughout the reference frame
have their time and position coordinates recorded locally, and a
sequence of events can be traced globally from this data.
3. To a good approximation, the 𝑣𝑣2⁄𝑟𝑟 accelerations due to Earth’s 
spin on its axis, its orbit about the Sun, and the solar system’s orbit 
around the galactic center are negligible in this application.
4. Recall that the proper time between two events is the time 
interval between them as measured in the reference frame where 
the two events occur at the same place. In other words, if ∆𝑥𝑥𝑥𝑥𝑥𝑥𝑥
then ∆𝑡𝑡 is the proper time.
5. These notes do not consider Clyde’s initial acceleration that got 
him up to speed at event A or his deceleration following the 
reunion at event R-----the acceleration at event Z is sufficient to 
make evident the role of acceleration in resolving the paradox. But 
those initial and final accelerations can be rendered irrelevant 
anyway by having Clyde get a running start before event A and 
coming to stop after event R. Nor do we need to consider the rate 
of change of Clyde’s acceleration (his ‘‘jerk’’) at event Z to make the 
point that it’s the existence of the acceleration itself whose neglect 
makes the adventures of the twins seem, at first glance, 
paradoxical.
6. Recall Einstein’s thought experiment about the train being 
struck by lightning on both ends [see Albert Einstein, Relativity: 
The Special and General Theory (Crown, 1961), pp. 25–27]. Einstein 
showed that the reception of the two flashes of light, if 
simultaneous to the ground-based observer, is not simultaneous 
for an observer riding on the train.


