EPLAB

PYRHELIOMETER For the Measurement of SOLAR RADIATION

Eppley Pyrheliometers are used for solar radiation measurements at ninety-eight weather stations in the continental United States, Canada, Alaska, Greenland, Iceland, Caribbean Sea, and the Pacific Ocean. Sixty-two of these stations are under the direction of the United States Weather Bureau. The Eppley Pyrheliometer was adopted as standard equipment by the Weather Bureau after considerable experimentation. It was found to be the best instrument so far tested by the Bureau.

Used in conjunction with a suitable recorder, the Eppley Pyrheliometer will provide an accurate and reliable record of total solar and sky radiation on a horizontal surface.

Bulletin No. 2 On Request

THE EPPLEY LABORATORY, INC.

Scientific Instruments

10 Sheffield Ave.

Newport, Rhode Island, U.S.A.

cal harmonic expansion methods. The discussion of reactor physics which follows is limited almost exclusively to the specific design of graphite moderated, gas cooled, natural uranium reactors which are now being built in the United Kingdom and the calculation of criticality is accompanied by a detailed numerical example which is based on the BEPO reactor. A short introduction to reactor kinetics, shielding, radiation detection, and radiation damage in solids rounds out the survey.

As a short general introduction to the subject for engineering courses, the book should prove quite useful, but the text that will present reactor physics in what Dr. Alvin Weinberg has called "the scholarly tradition" has not yet appeared.

Relativity: the Special Theory. By J. L. Synge. 450 pp. (North-Holland, Holland) Interscience Publishers, Inc., New York, 1956. \$10.50. Reviewed by P. M. Morse, Massachusetts Institute of Technology.

It is interesting to compare this volume with Panofsky and Phillips' Classical Electricity and Magnetism, for the two are mutually complementary. Panofsky and Phillips are physicists, and while they do not discuss the experimental basis of their subject, their exposition exhibits the inductive slant that is so necessary for an experimental science. The point of view in Synge's book is deductive, on the other hand. It starts with a definition of distances and coordinates in space-time, in terms of clocks and light beams, and from these, by theorems and geometric reasoning, deduces the Lorentz transformation and its consequences. Panofsky and Phillips start with electromagnetic theory, bring in special relativity as an analytic consequence of the Maxwell equations and direct their exposition toward the quantum theory; Synge starts with the geometry of the Lorentz rotation in space-time, brings in electromagnetism as an interesting application and directs his exposition toward general relativity and cosmology. Both points of view merit the attention of the student.

This reviewer found the thoroughgoing use of geometric reasoning in Synge's book both interesting and helpful. Of ten chapters the first four are concerned with the Lorentz rotation and its geometrical implications. The general space-time rotation is carefully analyzed into elementary space and time rotations and the representation of these rotations by means of spinors is discussed in some detail.

In the fifth chapter the connection between this spacetime geometry and physical phenomena is first introduced, with a discussion of the Doppler effect, the effect on light of moving media, and the connection between red-shift and the expanding universe. The sixth chapter deals with the mechanics of a particle and with the relativistic aspects of the various collision phenomena encountered in nuclear physics. The seventh chapter treats systems of particles, angular momentum, and the two-body problem in special relativity.

The seventh chapter, a long one, contains a more

INSTRUMENTATION ENGINEER

There are a few select positions in our organization for well qualified engineers who are at home in the areas of instrumentation development and application. At the same time they must be able to take the initiative in developing new and higher standards.

A thorough knowledge of laboratory experimentation instruments is required and the ability to apply these in measuring aerodynamic flow, vibration, etc. One activity involves the development of general instrumentation; the other is the application of instruments to the testing of engines and engine components.

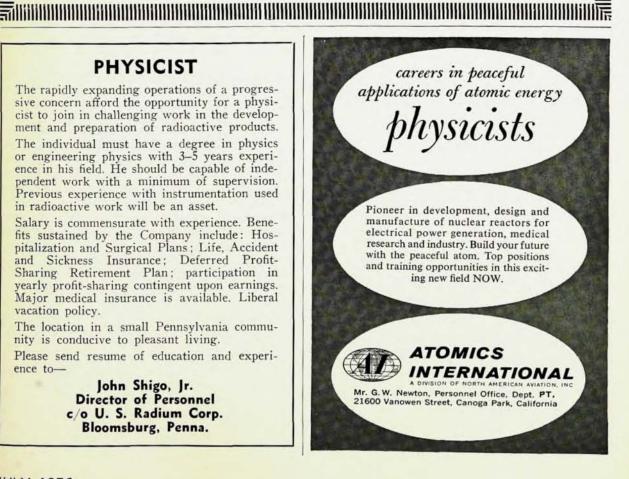
Work is in advanced areas where individual achievement is quickly recognized and rewarded. Starting salaries are high and are coupled with an outstanding benefits program. The location is on the east coast and well known as a cultural center.

> For further information write, giving details of education and experience to:

BOX NO. 756-E Physics Today, 57 East 55 St., New York 22, N. Y.

PHYSICIST

The rapidly expanding operations of a progressive concern afford the opportunity for a physicist to join in challenging work in the develop-ment and preparation of radioactive products.


The individual must have a degree in physics or engineering physics with 3-5 years experience in his field. He should be capable of independent work with a minimum of supervision. Previous experience with instrumentation used in radioactive work will be an asset.

Salary is commensurate with experience. Benefits sustained by the Company include: Hospitalization and Surgical Plans; Life, Accident and Sickness Insurance; Deferred Profit-Sharing Retirement Plan; participation in yearly profit-sharing contingent upon earnings. Major medical insurance is available. Liberal vacation policy.

The location in a small Pennsylvania community is conducive to pleasant living.

Please send resume of education and experience to-

> John Shigo, Jr. Director of Personnel c/o U. S. Radium Corp. Bloomsburg, Penna.

THE STRUCTURE OF TURBULENT SHEAR FLOW

By Dr A. A. Townsend

The first systematic and comprehensive discussion of all kinds of turbulent motion, and the first to provide a reliable analysis of the processes which occur. This book will be needed by all those concerned with the theory or application of fluid dynamics, especially graduates in the university departments of mathematics, engineering and physics, and the staffs of many research establishments and laboratories.

\$7.50, at your technical bookstore

CAMBRIDGE UNIVERSITY PRESS

> 32 East 57th Street New York 22, N. Y.

X-RAY DIFFRACTION AND FLUORESCENCE

Opening for responsible individual to take charge of new, well equipped X-ray laboratory in Midwest. Experience and interest required in metallurgical, corrosion, general diffraction problems and fluorescence applications. Submit resume and salary requirements. Send replies to Box 556A, Physics Today, 57 E. 55 St., N. Y. 22, N. Y.

readable discussion of the special relativity of continuous media than the reviewer has found elsewhere. The stress-energy tensor is introduced, its principal axes are found, the equations of motion of the medium are set up and the meaning of pressure and incompressibility is discussed. One who has mastered this chapter should have no particular difficulty in understanding recent theories of cosmology.

The last two chapters deal with classical electromagnetic theory in its relativistic form. Here again the treatment is axiomatic and geometrical, as contrasted with the analytic and inductive approach of Panofsky and Phillips. The field tensors and the energy tensors are set up, the principal axes of the energy tensor are determined and the Poynting vector and the potentials are derived. A short discussion of various types of fields and of the field around a moving charge completes the main part of the text. There are appendices on the radiation from an accelerated charge, on retarded potentials, a list of references, and a quite adequate index. There are no exercises.

The Foreseeable Future. By Sir George Thomson, 166 pp. Cambridge U. Press, New York, 1955. \$2.50. Reviewed by P. Morrison, Cornell University.

The physicist is a kind of specialist in innovation. Change in means and in concept is his daily expectation. But he is very well aware that the world is far from haphazard, that the more things change, the more they must remain the same. It was Edward Condon who told the congressman that even the most radically inclined of skeptics in physics held fast to some notions now two thousand years old, and never called them into question. His example was Archimedes' Principle! It is his understanding of the firm framework of the world, matched with the willingness to let the façade and the furnishings change freely, that makes a reflective physicist a good architect for planning any technical future.

Sir George has been willing to let us in on his own sketches for the shape of things to come in the next hundred years. In a chatty, unpretentious, and concise way, he has here produced a kind of operational research into the probable state of the world, chiefly of course its technical state, projected a century ahead. The arguments are made carefully, but in a most elementary style, explaining the invariant principles upon which they are founded in a wholly nontechnical but still roughly quantitative way. The result is a short book which is both a highly plausible prophecy and a model of the order-of-magnitude reasoning of the imaginative physicist at work. It is a book of wide general interest for what it says, and of special value to the young student of physics for how and why it says it.

In a neat statement of what he considers the fundamentals of our knowledge of the world (the First and Second Laws, the replicated atomicity of all matter, and so on) Sir George lays down a nice extrapolation in fields as diverse as fuel and materials, communications and food, medicine and learning theory. The book is so