


This simplified drawing of an experimental homogeneous type power reactor, now in the final assembly stage, shows one of five nuclear reactor projects currently under way at Los Alamos, where the world's first homogeneous reactor was designed and built and is still in operation.

Indicative of the importance of these experiments is the Laboratory's thirteen year record in active research, design and development in this major field of basic scientific interest.

Many challenging projects in nucleonics, physics, chemistry, metallurgy, mathematics and engineering support these as well as other of the Laboratory's diverse activities.

Top-level scientists and engineers interested in long-range career opportunities at one of the nation's foremost scientific laboratories can secure complete information by writing

conductivity in view of the fact that these topics are discussed in detail elsewhere in the *Handbuch*. The close interrelation between different fields of physics makes it, of course, impossible to completely avoid any overlap in an encyclopedia of this size.

In the third article Blackman gives a comparatively short, but well-balanced, survey of the specific heat of crystals. Throughout the review Debye's theory plays a dominant role. It is interesting to notice that, though much better calculations of specific heats, derived from detailed vibrational spectra, are now available, the results are nearly always discussed in terms of deviations from the Debye curve.

The last article gives a comprehensive survey of the theory of lattice imperfections (Schottky and Frenkel defects, dislocations, etc.). The author states in the introduction that hardly any mention will be made of those imperfections which are mainly characterized by their electronic excitation; such centers will be treated in later volumes. In spite of this limitation, it is impossible to describe in a few words the enormous wealth of information and theoretical analysis contained in this article.

A double subject index (English-German and German-English) assists the reader considerably in finding his way in this important reference work.

Ionized Gases. By A. von Engel. 281 pp. Oxford U. Press, New York, 1955. \$6.75. Reviewed by S. F. Singer, University of Maryland.

Ionization and excitation phenomena in gases have become important in atomic physics, astrophysics, spectroscopy, and the physics of the atmosphere and of the solid state, but they do not generally form part of the undergraduate physics curriculum. Perhaps the present volume will change this trend. It is not to be compared to the earlier two-volume work by von Engel and Steenbeck; it is written on a much simpler level with a more limited choice of topics. The book stresses the fundamentals of ionization and excitation processes in gases, collision phenomena, and recombination, with only a small fraction devoted to glow and arc discharges. What makes the book especially valuable, also to research workers, are the many numerical tables of important physical parameters in gas discharges, and the many clear diagrams (144 of them), plus the many references.

Low Temperature Physics (4th Edition). By L. C. Jackson. 158 pp. (Methuen, London) John Wiley & Sons, Inc., New York, 1956. \$2.00. Reviewed by E. A. Lynton, Rutgers University.

The expansion of the areas of investigation and the techniques of low-temperature physics during the past decade has brought about not only a correspondingly large increase in interest in this field, but also rapid obsolescence of most general books on the subject. What a pleasure, therefore, to welcome a largely re-