done on thin films and discusses what is known about their structure. A good description is also given of the formation of thin films in the laboratory. The main part is given over to the optical properties of thin films: the calculation of their optical properties and the measurement of optical constants. It is most valuable to have all these arts and techniques assembled in one place, both for the specialists in thin film optics and for the physicists who may need to prepare and calculate thin film depositions for his particular research application.

Static and Dynamic Electron Optics. By P. A. Sturrock. 240 pp. Cambridge University Press, New York, 1955. \$5.50. Reviewed by L. Marton and H. Mendlowitz, National Bureau of Standards.

There are a number of previous texts in English on electron optics, but this is the first that is devoted completely to theoretical electron optics. Although the title might imply that the subject matter is limited to electron optics only, there are some applications made to the optics of charged particles other than electrons, especially in the case of high-energy machines.

The author divides his presentation of the subject into two main topics. The first is a study of static electron optics (time independent fields) and the second investigates dynamic electron optics (time dependent fields). The treatment of the latter topic is the first appearing in an English language textbook and is a welcome addition to the literature.

The treatment of the various problems in electron optics can be best described as an elegant approach to classical mechanics which employs the variational principles and those convenient functions derived from them. The author obtains from the Hamilton-Jacobi approach to mechanics all the required information germane to geometrical electron optics. This is accomplished via the parallelism to Fermat's principle in light optics. He shows the relation of the canonical momentum of the particle to the refractive index in light. The treatment of particle accelerators (where the fields vary with time) is actually carried through by extending the author's elegant method on static field optics. The time coordinate is not considered as an independent parameter, as is usually done, but is treated as a dependent variable which is a function of the distance along the trajectory. In this manner, he goes on to discuss the high-energy machines such as synchrotrons, linear accelerators, and the strong focusing devices.

The book is offered to all interested in electron (and charged particle) optics, but because of the elegant treatment of the various problems, only those who are interested in and somewhat familiar with the Hamilton-Jacobi approach in classical mechanics will find that they can utilize the methods in the book without a great deal of effort. The average experimentalist interested in the design of an electron microscope lens or a beta-ray spectrograph will not find that he can immediately translate the formulas in the text to his usual routine design parameters without familiarizing himself with

this new approach given by the author. In some cases the reader might find some parts of the text difficult because of the "frugal-style" of the author. Elaboration on difficult points and repetition of terminology can, in some cases, be more of a virtue than a vice, especially in dealing with symbols which can sometimes be interpreted as variational operators or as differential operators.

In summary, we feel we can recommend the book to the theoretical worker in electron optics because it gives the author's approach to various problems which have been dealt with elsewhere, for the most part, in a different manner. In the static field case, many of the field properties are discussed by others in optical terms such as aberrations and focal distances, etc. In the case of time-dependent fields, the parameters are discussed elsewhere in mechanical terms such as orbit, stability, oscillations, etc. The author treats both problems in a somewhat similar fashion in terms of parameters which are derived from his "characteristic functions". His examples on beta-ray spectrographs and on the high-energy machines help bridge the gap between the various approaches.

The printing and binding of the book are good examples of the outstanding craftsmanship which we expect from Cambridge University Press.

Lentilles Electroniques (in French). Volume 1 of Optique Electronique. By P. Grivet, M. Y. Bernard, and A. Septier. 184 pp. Bordas, France, 1955. Paperbound. Reviewed by Charles J. Cook, Stanford Research Institute.

Lentilles Electroniques, first of a three volume set which embraces the field of particle accelerators, mass and velocity analysers, microscopes, etc., is restricted to a discussion of the optical properties of electrostatic and magnetic lenses.

After introducing the general components and operating techniques of electrostatic electron microscopes, the authors present practical experimental methods used to plot the fields of electrostatic and magnetic lenses. The body of the text, however, is devoted to the optical properties of these lenses. The rules of geometrical optics are developed for both types of lenses. The similarities and differences between optical glass lenses and charged particle lenses are pointed out in a most interesting and illuminating chapter. Then, after a rather complete consideration of the aberrations and distortions introduced by various systems, the properties of some of the more popular symmetrical lenses are discussed. The final short chapter introduces strong focusing.

The text is written in a freely flowing style that is easy to read, and is evolved in a manner that imparts a very strong feeling of intimate familiarity with each subject discussed. This impression probably stems from the successful integration of the theory underlying charged particle lenses with corresponding experimental results and practical lens applications. Each subject

EPLAB

Thermopiles

For many years the thermopile has been the accepted instrument for measuring Radiant Heat from Radiant Heaters at the American Gas Association Testing Laboratory in Cleveland, Ohio. Since 1930, when Vandaveer first described his work in this field,* an Eppley thermopile has been used for this purpose in hundreds of tests and the results have been consistent and accurate to within 1 per cent.

This is but one of the many applications in the field of radiant energy measurements for which Eppley Thermopiles are ideally suited. They may be obtained with windows of different materials, and various types of black are available for receiver coatings.

All Eppley Thermopiles are supplied with a certificate of calibration, this calibration being made against a Standard Lamp from the National Bureau of Standards.

If you have a problem involving the measurement of radiant energy we invite you to write us, describing your problem in as much detail as possible. We will be glad to make recommendations and there will be no obligation.

*Vandaveer, Industrial & Engineering Chemistry, Vol. 22, page 596, June 1930.

BULLETIN NO. 3 ON REQUEST ADDRESS: 10 SHEFFIELD AVE., NEWPORT, R. I.

THE EPPLEY LABORATORY, INC.

SCIENTIFIC INSTRUMENTS

NEWPORT, RHODE ISLAND, U. S. A.

Now Available NUCLEAR LEVEL SCHEMES A = 40 to A = 92 Ca to Zr

Compiled by K. WAY, R. W. KING C. L. McGINNIS, R. VAN LIESHOUT

Nuclear Data Group, National Research Council AEC Publication, TID-5300, \$1.75

This section of Nuclear Level Schemes, the first to be issued, is self-contained with all necessary references

Order from Superintendent of Documents, Government Printing Office,

Washington 25, D. C. (Check or money order)

Keep Up-to-Date NUCLEAR DATA CARDS

Will supplement all sections of Nuclear Level Schemes. Issued monthly, 125 to 150 cards per month. Each card gives new experimental results for a single nucleus, key experimental information, and literature reference.

C. L. McGINNIS, editor, D. N. KUNDU R. VAN LIESHOUT, K. WAY

Subscriptions (for calendar year only) \$20 U. S. and Canada (regular mail); elsewhere \$30 (air mail)

Order from Publications Office, Room G-4,
National Research Council,
2101 Constitution Ave.,
Washington 25, D. C.

Coming . . .

METHODS OF MATHEMATICAL PHYSICS

THIRD EDITION

by Sir Harold and Lady Jeffreys

"A fine product of British mathematical scholarship, and a benefaction to the cause of progress in natural philosophy."

-Nature on the Second Edition

About \$15.00, at your technical bookstore

Cambridge University Press 32 East 57th Street, New York 22, New York

PHYSICISTS

The APPLIED PHYSICS LABORATORY of THE JOHNS HOPKINS UNIVERSITY offers an exceptional opportunity for professional advancement in a well-established Laboratory with a reputation for the encouragement of individual responsibility and self-direction.

Our program of

GUIDED MISSILE RESEARCH and DEVELOPMENT

provides such an opportunity for men qualified in:

STATISTICAL THEORY OF NOISE AND INFORMATION
AERODYNAMIC STABILITY AND CONTROL ANALYSIS
OPERATION OF ELECTRONIC ANALOG COMPUTERS
ANALYSIS OF WEAPONS EFFECTIVENESS
DESIGN AND ANALYSIS OF GUIDED-MISSILE CONTROL SYSTEMS
SYNTHESIS AND ANALYSIS OF GUIDANCE SYSTEMS
BASIC RESEARCH—FLUID OR SOLID MECHANICS, MICROWAYE
SPECTROSCOPY, AND SOLID STATE PHYSICS

Please send your resume to Professional Staff Appointments

APPLIED PHYSICS LABORATORY THE JOHNS HOPKINS UNIVERSITY

8611 Georgia Avenue, Silver Spring, Maryland

IF YOU WANT: a position with responsibility in a small, progressive research firm... to live and work in New England... a secure, well-paying position with unlimited advancement opportunities. IF YOU ARE INTERESTED IN: application of basic physical principles to many unconventional problems in fields such as ... radiation processes... high temperature phenomena... instrumentation... IF YOU HAVE: a B.S., M.S., or a Ph.D. in experimental or theoretical physics, electronics or applied mathematics... THEN DO THIS: Write to Dr. M. Annis at:

Midesperon

43 Leon Street, Boston, Mass.

is theoretically and experimentally so developed that all the pertinent characteristics are properly emphasized; however, the text is fully documented so that the reader can easily fill in the details of particular interest.

Lentilles Electroniques provides not only an introduction to the field, but is a source book suitable for those familiar with the field.

Books Received

ABHANDLUNGEN AUS DEM FRITZ-HABER-INSTITUT. Vol. 31. 1954, 427 pp. Fritz Haber Institut der Max-Planck-Gesellschaft, Berlin Dahlem, Germany, 1955. Paperbound.

REVIEW OF CURRENT RESEARCH AND DIRECTORY OF MEMBER INSTITUTIONS, 1955. Edited by Renato Contini. 352 pp. Engineering College Research Council of the American Society for Engineering Education, New York, 1955. Paperbound \$2.00.

ASTROPHYSICAL QUANTITIES. By C. W. Allen. 263 pp. (The Athlone Press, England) John de Graff, Inc., New York, 1955. \$10.00.

THE HISTORY OF THE TELESCOPE. By Henry C. King. 456 pp. (C. Griffin, England) Sky Publishing Corp., Cambridge, Mass., 1955. \$12.50.

Scholarships, Fellowships and Loans. Vol. III. By S. Norman Feingold. 471 pp. Bellman Publishing Co., Cambridge, Mass., 1955. \$10.00.

Introduction to Modern Physics (5th Edition). By F. K. Richtmyer, E. H. Kennard, and T. Lauritsen. 666 pp. McGraw-Hill Book Co., Inc., New York, 1955. \$8.50.

SMALL-ANGLE SCATTERING OF X-RAYS. By André Guinier and Gérard Fournet. Translator, C. B. Walker. 268 pp. John Wiley & Sons, Inc., New York, 1955, \$7.50.

THE ATOMIC NUCLEUS. By Robley D. Evans. 972 pp. Mc-Graw-Hill Book Co., Inc., New York, 1955. \$14.50.

METEORS: PROCEEDINGS OF A SYMPOSIUM ON METEOR PHYSICS. Edited by T. R. Kaiser. 204 pp. Pergamon Press Ltd., London & New York, 1955. \$8.50.

GAS TURBINES AND JET PROPULSION (Sixth Edition). By G. Geoffrey Smith. 412 pp. (Iliffe, England) Philosophical Library, New York, 1955. \$15.00.

BIBLIOGRAPHY OF MONOLINGUAL SCIENTIFIC AND TECHNICAL GLOSSARIES. Vol. I: National Standards. By Eugen Wüster. (Unesco, France) 219 pp. Columbia University Press, New York, 1955. Paperbound \$2.50.

PROCEEDINGS OF THE 11TH GENERAL ASSEMBLY OF INTERNATIONAL SCIENTIFIC RADIO UNION. Vol. X, Part 3, Commission III on Ionospheric Radio (The Hague, 1954). Published by URSI (Unesco), Brussels, Belgium, 1955. Paperbound \$4.00.

BOLTZMANN'S DISTRIBUTION LAW. By E. A. Guggenheim. 61 pp. (North-Holland, Holland) Interscience Publishers, Inc., New York, 1955. \$1.50.

ATOMIC POWER AND THE H-BOMB. By C. B. O. Mohr. 20 pp. (Melbourne U., Australia) Cambridge University Press, New York, 1955. Paperbound \$.35.

ABSTRACTS OF THE LITERATURE ON SEMICONDUCTING AND LUMINISCENT MATERIALS AND THEIR APPLICATIONS, 1954 Issue. Compiled by Battelle Memorial Institute. 200 pp. John Wiley & Sons, Inc., New York, 1955. Paperbound \$5.00.