The geometrical theory of the Schmidt camera, a reflecting telescope with a shaped transparent disk that distorts the incident field to "precorrect" for spherical aberration of the mirror, is given in Chapter 3. The final chapter treats plate-diagram analysis, a geometrical ray technique which essentially represents each surface of a lens system by an equivalent spherical surface plus an astigmatizing corrector plate (the plate being imaged in the part of the system which precedes it).

The content of the monograph, as it pertains to certain advances in the theory of instrumental optics during a twenty-year period ending in 1953, is excellent; and it will prove useful to specialists in the field to have the original work of the author, as well as accounts of work by Zernike, Wolf, Hopkins, Wayman, Burch and others, under one cover. However, the title is somewhat too inclusive since, for example, no mention at all is made of the concurrent advances in rigorous treatments of diffraction problems or in the "new ray optics" based on asymptotic solutions of Maxwell's equations.

It is regrettable that the work is so well aimed at specialists. The absence of introductory material may make it quite difficult for an outsider, say in radio astronomy, to attempt to carry over useful optical techniques to related problems of antenna design; in fact some sections read like patchworks of journal articles with the introductions deleted. The most readable chapter is that on the Schmidt camera and this is due largely to its excellent introductory discussion and its clear statement of the problem involved.

Reports on Progress in Physics. Volume XVII. Edited by A. C. Stickland. 280 pp. The Physical Society, London, England, 1954. Nonfellows, £2, 10s.; fellows, 27s. 6d. (Postage 1s. 6d.) Reviewed by E. R. Cohen, North American Aviation, Inc.

The seventeenth volume of this annual publication is made up of eight survey articles which well represent the present varied frontiers of physics.

C. J. Bouwkamp of the Netherlands contributes an extensive survey of classical diffraction theory which includes among other topics the Wiener-Hopf technique for the solution of integral equations, the rigorous formulation of Babinet's principle, and a discussion of spheroidal wave functions in diffraction theory. J. A. Chalmers reports on atmospheric electricity and B. H. Briggs and M. Spencer survey movements in the ionosphere obtained by radio methods.

C. W. Allen discusses the physical condition of the solar corona as it is understood today, and traces the development of this understanding from 1942, when Edlén identified "coronium" as highly ionized states of A, Ca, Fe, and Ni, thus providing the basis for a reasonable physical model. Atomic valance states and chemical binding are discussed by W. Moffitt and antiferromagnetism is covered by A. B. Lidiard.

Nuclear physics is represented by two reviews which span the range of activity in this field; E. Teller dis-

cusses the origin of cosmic rays, and M. H. L. Pryce surveys the evidence on nuclear shell structure.

The production of the book, as is usual in this series, is excellent; physicists in general have been acquainted with the *Reports* for so many years that such an observation is however probably superfluous. Individual articles reprinted from the *Reports* are available at prices which vary according to their length. Information on this may be obtained directly from the offices of the Physical Society of London.

Optical Properties of Thin Solid Films. By O. S. Heavens. 261 pp. (Butterworths Scientific Publications, England) Academic Press Inc., New York, 1955. \$6.80. Reviewed by S. F. Singer, University of Maryland.

The large strides which have been made recently in the techniques and applications of thin films have gone hand in hand with the developments in vacuum technique and electron microscopy. The former has been used to improve the methods of film deposition while the latter has been used to obtain information hitherto unobtainable about the physical properties of films. The subject of thin films has become increasingly important also because of its practical applications in optics. While partly transparent, highly reflecting metal films were used in the Fabry-Perot interferometer over 50 years ago, the technique has developed to an amazing extent so that films of very great complexity and of controlled thickness can now be deposited quite accurately. The construction of complicated multi-layer systems of films, both metal and dielectric, has now become a common adjunct in physical research. Thin films find their applications in anti-reflecting systems which may use a single film, a double film, or even a triple film. The effectiveness of this technique is remarkable: an instrument with 20 untreated optical surfaces would have a light transmission of only 32% but with the use of the three layer anti-reflecting system this figure could be increased to 98% for the visible spectrum. In other applications high efficiency reflecting systems are of importance. Here advances have been made by the use of systems of dielectric layers having different indices of refraction. These are applied in controlled thicknesses, generally $\lambda/4$ optical thickness. Such all-dielectric reflecting films can give considerable improvement in the performance of certain instruments, e.g. a Fabry-Perot interferometer. It results in a small fringe width and, therefore, an improved resolution. Also, the transmitted light intensity is much greater than it would be with the use of a metal film reflector, e.g. a silver film. Of particular interest in many fields of spectroscopy and astrophysics is the use of deposited films to construct interference filters. These multilayer films cannot yet compete with polarization filters when it comes to extremely narrow band widths, but they should be useful for a band width of about 20 Å, while a polarization filter can be built for a band width of the order of

The present volume reviews the work which has been