interesting problems of manned space travel. Vaeth clearly points out the requirement for fundamental step-by-step research and exploration of those problems and the extremely serious limitations on making a sudden "jump" from the present high-altitude rockets, jet aircraft, and proposed unmanned "minimum satellite" to full-fledged manned trip to the moon or further.

It should be pointed out that, though the Navy first employed the Aerobee rocket for high-altitude research, the extent of Aerobee firings and research programs by other agencies in the United States has been at least equal to those sponsored by the Navy. As of the present time nearly 140 Aerobees and Aerobee-Hi rockets have been launched for upper-atmosphere research. Of these, at least 60 firings have been by the Air Force and over 30 by the Army Signal Corps. Similarly, though the Office of Naval Research was responsible for the basic development of the Skyhook high-altitude plastic balloon, the very extensive Air Force programs of "Moby Dick" high-altitude balloon flights for upper-atmosphere and space-biology studies should be given more than passing notice.

In discussing the cause of the blue color of the sky the author states that this is due to "dust particles". Leonardo da Vinci first suggested that the blue of the sky was due to scattering by the gaseous molecules of the atmosphere, and since Lord Rayleigh's development of the inverse fourth power of the wavelength theory of atmospheric scattering of light there appears to be little opposition of the gaseous molecular explanation of the blue color of the normal sky. The reports of the observers in the Explorer I and II balloon flights to 72 000 feet, indicate that the sky was still blue 20° to 30° above the horizon, grading to very dark blue-black higher up. This observation appears to be consistent with gaseous molecular scattering theory.

In conclusion, Vaeth emphasizes the value of the international coordination and cooperation which should result from the International Geophysical Year and from the achievement of the artificial Minimum Earth Satellite. Certainly, from the viewpoint of scientific knowledge of the upper atmosphere, and as factors leading towards true space flight, these points will be invaluable. Can we hope that the items of international cooperation and of political "uncertainty" which will be interjected into the present international picture by the proposed artificial Minimum Earth Satellite will also give us a firm incentive towards world peace? 200 Miles Up suggests that this may be so.

Determination of Organic Structures by Physical Methods. Edited by E. A. Braude and F. C. Nachod. 810 pp. Academic Press Inc., New York, 1955. \$15.00. Reviewed by Joseph G. Hoffman, Roswell Park Memorial Institute.

The preface points out that applications of physical principles and chemical methods to the analysis of organic structures had not hitherto been collectively reviewed. The editors with the aid of twenty-two contributors have made a compilation of such methods of analysis. Many diverse and specialized aspects of physical chemistry bearing on organic structures are reviewed in sixteen chapters. The book is subdivided into three main sections, the first on molecular size, the second on molecular pattern, and the third on molecular fine structures. Its 810 pages make it a compendium essential for workers in the many different sciences such as physics, biophysics, biochemistry, and physical chemistry where knowledge of organic structures of molecules has almost become an everyday requirement.

Inasmuch as there is broad coverage of a wide range of highly technical subjects this review can only point out some of the typical contributors. Thus the chapter on Magnetic Susceptibilities reviews, by means of specific examples of compounds, magnetic analysis by means of static and alternating magnetic fields. The chapter on Dipole Moments is equally specific in that it shows what can be done with dipole moments and how to do it. Likewise the chapters on Dissociation Constants and Reaction Kinetics are filled with data accompanying remarkably clear discussions of structure problems. The last chapter on Wave Mechanical Theory provides a fine summary of theory pertinent to molecular structure.

Many workers in borderline fields such as biophysics or biochemistry will find here much useful and timely material. Indeed, many of the numerous examples discussed are compounds sometimes called biomolecules. The text is generously illustrated with appropriate figures and diagrams, and is supported by ample data. The very good author and subject indices serve the reader well in this broad and complex subject which crosses several different basic disciplines.

Harmonic Analysis and the Theory of Probability. By Salomon Bochner. 176 pp. University of California Press, Berkeley, Calif., 1955. \$4.50. Reviewed by T. Teichmann, Lockhead Aircraft Corporation.

In recent years the boundary between mathematical probability theory and Fourier transform theory has all but vanished due to the extensive use of the characteristic functions (essentially Fourier transforms) of probability distributions in so many applications. While probability theory to some extent restricts the transform theory to positive definite functions, it also elicits in a natural way the deeper and more general concepts discussed in the latter portion of this book.

The first part of the book summarizes the basic properties of Fourier transforms and the more important underlying notions, such as approximations, additive set functions and summability. Poisson's summation formula is introduced in a very general and elegant way (though there is an obvious misprint in line 5, p. 31). Some of the basic properties of n-dimensional spherical harmonics are introduced very naturally in terms of n-dimensional Fourier transforms.

The next two chapters deal with closure properties and with Laplace and Mellin transforms. The treat-