# X-RAY DIFFRACTION AND FLUORESCENCE

Opening for responsible individual to take charge of new, well equipped x-ray laboratory in Midwest. Experience and interest required in metallurgical, corrosion, general diffraction problems and fluorescence applications. Submit replies to:

## **GOODYEAR ATOMIC CORPORATION**

Employment Department Q P.O. Box 628 Portsmouth, Ohio

## Complete Weather Stations

No. 1 Amateur Weather Station \$49.50

Maximum-Minimum Thermometer (#116). Rain and Snow

Maximum-Minimum Thermometer (#116). Rain and Snow Gage (#510). Hygrometer (#201). Baroguide (#311). Wind Vane (#430). Shelter (#175).

No. 2 High School Weather Station \$170.00

Maximum-Minimum Thermometer (#111). Rain and Snow Gage (#503). Sling Psychrometer (#208). Barometer, aneroid (#306). Anemometer (#401). Wind Vane (#425). Wind Indicator (#475).

No. 3 College Weather Station \$650.00

Maximum-Minimum Thermometers (#111). Thermograph (#156). Barograph (#352). Barometer, aneroid (#306). Rain and Snow Gage (#503). Sling Psychrometer (#208). Windial (#476).

No. 4 Professional Meteorological Station \$2750.00

Hygrothermograph (#255). Microbarograph (#355). Recording Rain Gage (#551). Aerovane Recording System (#4-141).

## Science Associates

Instruments / Weather • Astronomy / Teaching Aids
194 Nassau Street, Princeton, N. J.

ference, with important and highly encouraging implications for the future. A banquet was held in the University Museum on the evening of the second day. It was a splendid occasion, cordial, hilarious, full of good fellowship and warmth which left only the surrounding Egyptian statues unmoved.

> H. K. Henisch University of Reading

1825 B

nd te

mdica

NOT.

gof !

it the

îne

1015

censio

enty

ur to

j jeco

med

The I

uchine.

schapi

ed to

35 Of

शिस,

应

The c

milet.

he par

THE !

refer.

la ge

leting

nia fu

1 565

atts

Itman

BI

the

**BEION** 

onted

DW I

toling

plat et

ricity

acri

SSR

14 el

地面

mid

11 (2

One

沙田

lstael

When

ut

id

PER S

heat

R-j

00

#### Solar Energy

INTEREST in the direct utilization of solar energy is increasing rapidly. At a symposium in Wisconsin in 1953 and again in India in 1954 there was an attendance of about forty. At the conference on solar energy utilization in Arizona last November there were nearly a thousand registrants including 130 scientists from 31 foreign countries. The Ford Foundation, the Rockefeller Foundation, UNESCO and several agencies of the United States Government made possible the participation of the foreign guests.

The conferences were sponsored jointly by the newlyformed Association for Applied Solar Energy, the Stanford Research Institute, and the University of Arizona. Leaders in the organization plans were Merritt L. Kastens, Henry B. Sargent, and Louis W. Douglas. The conference attracted a great variety of people—physicists, chemists, biologists, engineers, and many observers, writers, industrialists, and businessmen who were keeping an eye on new developments in a field of expanding potentialities.

The conference was divided into three parts: The Scientific Basis at Tucson; The World Symposium on Applied Solar Energy at Phoenix; and the Solar Engineering Exhibition at Phoenix.

There was a great demand for places on the scientific programs at Tucson and it was necessary to hold several meetings simultaneously, morning, noon, and evening. It was unfortunate that these programs had to overlap in time and that there was insufficient time for discussion, but the program committee under the chairmanship of Edwin F. Carpenter did an effective job in making available many last-minute contributions. Over one hundred papers describing frontier researches were emphasized at Tucson, while thirty reviews and summaries, stressing practical applications, were given at Phoenix.

The Tucson program dealt with thermal, photochemical, and electrical processes. The thermal processes included flat-plate collectors, high-temperature furnaces, solar stoves, house-heating and cooling, solar power, and solar distillation of saline water; the photochemical processes covered algal culture and higher plants and nonbiological systems; and the electrical processes contained papers on thermal, photogalvanic, and photovoltaic systems.

There were many controversies, such as that between the advocates of flat-plate collectors for heating water and other liquids and the advocates of converging reflectors which can give higher temperatures. It may turn out that the flat plates will be best for cloudy areas and that the converging collectors will be best for high temperatures in sunny countries even with their handicapping requirement that they must be moved to follow the sun. Another lively controversy involved the use of higher plants as against the mass culture of algae for the biological utilization of solar energy.

One session was devoted to instruments and techniques for the measurements of solar radiation. If an expansion is to be considered in the use of the sun's energy in nonindustrialized countries, it will be necessary to have information concerning the solar radiation in areas where records are not now available. The type of records and practical instruments for use by untrained scientists were discussed.

The more general papers at Phoenix included solar machines, high-temperature furnaces, solar stills, and mechanical energy from solar energy. A day was devoted to solar house heating and cooling with descriptions of houses built by Hottel in Boston, by Telkes in Dover, Mass., by Löf in Denver, and by Bliss in Arizona.

The cooling of houses was discussed by Löf, and the architectural problems of solar collectors were stressed. One paper by Sporn and Ambrose described the present status of the heat pump combined with solar house heating.

In general, it seemed to be accepted that solar house heating is expensive and that supplementary heating with fuel is advisable for the practical, economic use of solar energy, at least in the northern half of the country.

A session on the utilization of solar energy through plants and algae by Brooks, Fisher, Myers, Tamiya, Thimann and others brought out engineering possibilities in the growth of algae. One of the chief difficulties in the mass culture of algae is keeping the algal suspensions cool enough. An important development reported is the finding of a strain of algae which will grow rapidly at 40° C and thus reduce the expensive cooling requirements.

At the final session the possibilities of converting solar energy directly into chemical energy and into electricity were presented. A paper by V. A. Baum was read describing progress in solar energy research in the USSR. In this paper plans were proposed for generating electricity for a city of 20 000 with the help of a steam boiler on a tower 130 feet high surrounded by semicircular tracks carrying large flat mirrors mounted on cars which were moved with the sun.

One of the most significant contributions was made by H. Tabor of the National Institute of Physics of Israel, who described thin coatings of nickel oxide and other black materials which absorb efficiently throughout the whole solar spectrum but which do not absorb and hence do not radiate in the long infrared. With these coatings it is possible to obtain considerably higher temperatures for a water boiler because, although the solar energy is completely absorbed, the heated boiler does not lose its heat so quickly through re-irradiation in the far infrared.

# SANDIA

CORPORATION

invites well-qualified
PHYSICISTS AND
ENGINEERING PHYSICISTS
to investigate
CURRENT OPPORTUNITIES
in the challenging field of

NUCLEAR WEAPONS
DEVELOPMENT

We are presently seeking additional staff members with these qualifications:

#### PHYSICISTS AND ENGINEERING PHYSICISTS

Classical theorists or experimentalists, with MS or PhD degrees, to work in the fields of weapon systems analysis, blast wave propagation and diffraction, evaluation of present weapon designs, and recommendations for new weapons.

SANDIA CORPORATION, a subsidiary of the Western Electric Company located in Albuquerque, N. M., is engaged in the design and development of nuclear weapons under contract with the Atomic Energy Commission. Compensation is competitive with that offered in other industry, and employee benefits include exceptionally liberal paid vacations, free group life insurance, sickness benefits, and a generous contributory retirement plan. Interview and liberal relocation expenses are paid by Sandia Corporation. Albuquerque, center of a metropolitan area of 186,000, is located in the Rio Grande Valley, one mile above sea level. Urban shopping facilities, scenic beauty, historic interest, year-round sports, and sunny, mild, dry climate make Albuquerque an ideal home. Housing is readily obtainable.

WE WILL WELCOME THE OPPORTUNITY
TO SEND YOU FULL DETAILS
ON CURRENT CAREER OPPORTUNITIES

STAFF EMPLOYMENT DIVISION 559
SANDIA CORPORATION, Albuquerque, N. M.
Please send additional information on career
opportunities at Sandia to:

NAME: \_\_\_\_

....

FIELD:

\_\_\_YEARS.

ADDRESS:

EXPERIENCE IN FIELD:

If you wish to submit a more complete resume of your qualifications, we will be happy to give it full consideration immediately.

SANDIA

ALBUQUERQUE, NEW MEXICO

Engineers ME-EE, Mathematicians

You Don't Need Previous Experience to Get Into

### ADVANCED CONTROLS DEVELOPMENT

with this organization.

Whatever professional area you are now in— as long as you have an analytical mind and some scientific experience there is an excellent opportunity for you to enter CONTROLS DE VELOPMENT.

This field is growing in importance every day, Many current requirements are so new that the technical "know-how" must be learned on

The career opportunities are obvious when you consider that every time a more advanced small turboprop, turboshaft or turbojet engine is created, an entirely new controls system must be developed to take full advantage of the power-plant's potential.

There are reputations to be seen in every phase of CONTROLS ANALYSIS as well as CONTROLS SYSTEM and COMPONENT DESIGN.

- LOCATION: East Coast Resort Area. RELOCATION EXPENSES PAID. OUTSTANDING BENEFIT PROGRAM.
- GOOD STARTING SALARY

Your reply will be handled on a strictly confidential basis.

Write to Box 1056B, Physics Today 57 East 55 Street, New York 22, N. Y.

IF YOU WANT: a position with responsibility in a small, progressive research firm...to live and work in New England . . . a secure, well-paying position with unlimited advancement opportunities. IF YOU ARE INTERESTED IN: application of basic physical principles to many unconventional problems in fields such as . . . radiation processes . . . high temperature phenomena . . . instrumentation . . . IF YOU HAVE: a B.S., M.S., or a Ph.D. in experimental or theoretical physics, electronics or applied mathematics . . . THEN DO THIS: Write to Dr. M. Annis at:

ALLIED RESEARCH ASSOCIATES, INC.

43 Leon Street, Boston, Mass.

Professor Trombe described experiments with his large 35-foot mirror. At the close of the session it was announced that a much larger solar furnace is to be built in France capable of producing 1000 kilowatts of heat at temperatures above 3000° C for use on a semiproduction scale.

e e

13000

tract

ing I

Y I

mdac

in in

1 20

1 350

卿

n the

即自

sopera

wist

画!

The

les inte

ster,

(BB)

THE REAL PROPERTY.

Lion

M. I

Bi

SH

WIDIG: The

145

lanc

cenc

i Wa

SUI

#n

test

inti

**Scat** 

ine

Th

ath

10

121

An important feature of the symposium was the outdoor exhibition of solar devices which included measuring instruments, collectors of solar energy, cookers, househeating and cooling units, high-temperature furnaces. solar engines, saline water stills, photovoltaic cells. photosynthesis, and agricultural aids. Of the nearly one hundred exhibits, some bordered on gadgeteering, but the 30 000 visitors to the exhibition certainly came away with a good realization of the present status of attempts to utilize solar energy. Several different types of solar cookers were exhibited. They were developed in India, Lebanon, Japan, and Burma, as well as in the United States.

Both parabolic reflectors and flat-plate collectors were demonstrated. A five-foot furnace converted from an army surplus searchlight was melting tungsten, and a small plastic fresnel lens was fusing fluxes for making jewelry. Professor Trombe exhibited an accurate model of his 35-foot solar furnace in France.

An Italian company demonstrated a vapor engine for pumping water, in which sulfur dioxide is vaporized in a flat-plate collector. Dr. Charles G. Abbot exhibited a model of his cylindrical mirror focused on a vacuumjacketed tube with a high boiling liquid which generates steam in a heat exchanger. Pulsating mechanical energy generated in a water column, and small pin wheels. showed less conventional methods of converting solar energy into useful work.

The use of thin plastics for the solar distillation of salt water was exhibited and plans for large-scale developments in solar distillation of sea water were described.

The silicon solar battery of the Bell Telephone Laboratories was shown and the visitors were given an opportunity to talk over telephones operated by solar batteries.

At the general sessions, the economics of solar energy were discussed by J. E. Hobson who gave the costs of conventional fuels in various parts of the world and compared them with anticipated costs of solar energy.

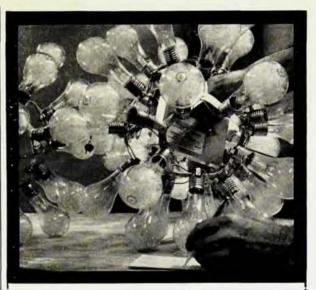
The dinner speaker, John Jay Hopkins, stressed the importance of an international energy agency to raise the standards of living throughout the world.

Two policy questions were raised at the meetingsthe desirability of starting a new journal of solar research and engineering, and the advisability of encouraging an international organization of solar energy utilization research.

It was made abundantly clear at this Arizona conference, as at previous conferences on solar energy, that solar energy cannot now compete with conventional electricity and fuel in highly industrialized areas where these are abundant and that there is nothing now in sight which approaches costs of 2 cents per kilowatt hour of electricity or \$50 for a one-horse power gasoline engine. The competition with animal power and manpower in nonindustrialized countries, however, is attractive, and intensive research is to be encouraged along many different lines. New materials, new plastics, new ways of fabricating large, cheap reflectors, mass production of small steam engines, simplified ways of pumping water, and new types of storage batteries may well accelerate the utilization of solar energy. The shortrange researches involve new ways of utilizing the sun's energy as heat, the long-range researches should encourage the photochemical and photoelectrical conversion of solar energy. The field is one which calls for intelligent cooperation between scientists, engineers, economists, industrialists, business men, and the governments of many nations.

The Geneva "Atoms for Peace" conference and the Arizona "Sun for Man's Use" conference taken together, give hope through research of adequate energy sources throughout the world, not only for the future when conventional fuels become scarce, but for the present in the nonindustrialized areas where fuel is expensive and difficult to transport.

Atomic energy can supplement conventional fuels in large units near cities, and solar energy can supplement them in small units in sunny, rural areas, but intensive research by many people is needed to make them economically attractive.


The Proceedings of the World Symposium on Applied Solar Energy in Arizona have already been published and the Tucson papers will become available later.

> Farrington Daniels University of Wisconsin

#### Naval Hydrodynamics

SYMPOSIUM on Naval Hydrodynamics, spon-A sored by the Office of Naval Research (Mechanics Branch) in cooperation with the National Academy of Sciences and National Research Council, took place in Washington, D. C., September 24-28. The first of a series to be held on a yearly basis, the symposium is described as being an outgrowth of a continually growing need for meetings devoted exclusively to developments in the rapidly advancing field of hydrodynamics, particularly in the areas basic to naval and marine applications. The meeting was unclassified and open to all those interested.

The following speakers and their topics were listed in the program: C. C. Lin (boundary layer stability), S. Corrsin (turbulence in shear flows), G. K. Batchelor (wave scattering due to turbulence), M. J. Lighthill (river waves), W. H. Munk and M. Tucker (ocean wave spectrum), D. Gilbarg (free streamline theory and steady state cavitation), M. S. Plesset (physical effects in cavitation and boiling), H. Snay (hydrodynamics of underwater explosions), G. P. Weinblum (seaworthiness), H. Lerbs (hydrodynamics of marine propulsion), J. V. Wehausen (ship wave phenomena), M. Strasberg



# Sudden Light!

This cluster of flashbulbs throws sudden light on a problem that has occupied scientists for many years: the effect of weather on the transmission of electromagnetic radiation through the atmosphere. Technical Operations' scientists have developed unique theoretical and experimental techniques to solve this and many other problems. Association with Technical Operations can throw an equally sudden light . . .

on your career as a

## Physicist or Mathematician

Technical Operations is working on a wide range of problems involving physicists and mathematicians-in reactor development, experimental design, nuclear weapons effects, microwaves, digital computing, operations research. Positions are available at Arlington, Mass., and Washington, D. C.

#### With These Advantages:

- · simple, sensible salary policies
- management by scientists
- opportunities for fundamental research in a variety of fields
- an organization small enough for individual recognition, large enough for long-range security

Write for brochure and short application

Robert L. Koller

# TECHNICAL

INCORPORATED

6 Schouler Court Arlington 74, Massachusetts