OPERATIONS RESEARCH ANALYSTS

To apply training or experience in:

Pure or Applied Mathematics Mathematical Statistics Management Science Econometrics Psychophysics

Toward solution of challenging and widely diversified military and industrial problems. Currently expanding activities include:

Analytical Statistics and Design of Experiments
Air and Road Traffic Control Studies
Weapons Systems Evaluation
Communication System Analysis
Inventory and Production Control
Equipment Reliability Analysis
Countermeasure Development

These are full time positions offering salaries comparable with those in industry and educational benefits for graduate study. Qualifications include advanced degree, prior operations research experience, familiarity with application of electronic computers.

J. A. Metzger

ARMOUR RESEARCH FOUNDATION

of Illinois Institute of Technology

10 West 35th Street

Chicago 16, Illinois

WE ARE SPECIALLY ORGANIZED TO HANDLE DIRECT ORDERS OR ENQUIRIES FROM OVERSEAS

SPOT DELIVERIES FOR U.S.
BILLED IN DOLLARS—
SETTLEMENT BY YOUR CHECK
CABLE OR AIRMAIL TODAY

TYPE	UU F/ft	IMPED.S	O.D.
C1	7.3	150	.36
CII	6.3	173	.36
C2	6.3	171	.44
C 22	5.5	184	.44
C3	5.4	197	.64
C 33	4.8	220	.64
C 4	4.6	229	1.03
C 44	4.1	252	1.03

TRANSRADIO LTD. 138A Cromwell Rd. London SW7 ENGLAND

Meetings

least lean

ill ol

Th

mdu

HELTE

nd t

1550

Am

If cot

20 b

油

गर्दर ।

hely

II SPI

18

W III

500

inchi

trans

3356

nunt

efect

REID

tictu

versi

IN

subj

Th

曲

of b

ind

the

M

Je

0

Physics of Semiconductor Surfaces

HE current interest in the surface properties of semiconducting materials has its origin largely in earlier attempts (e.g., 1938-47) to understand rectification phenomena at contacts between semiconductors and metals. To account for the lack of correlation between rectification properties and the thermionic work functions of the surfaces concerned, Bardeen suggested in 1947 that the free surface of a semiconductor is associated with a potential barrier arising from the presence of surface states. Electrons accommodated in these states would act as an electrostatic screen and would protect the barrier (in varying degree, depending on the density of surface states) from interaction with external charges. This would make the barrier independent of (or, at any rate, insensitive to) differences between the work functions of one contacting metal and another. Since then, surface states and associated phenomena have been the subject of intensive research, and the interest is no longer confined to contact rectification. Surface properties influence the performance and, notably, the stability of a variety of semiconductor devices, and independent arguments have established the importance of surface states in a whole range of catalytic phenomena and oxidation processes. The investigations are thus supported by important practical as well as theoretical interests.

To survey the progress made during the last ten years or so, a "Conference on the Physics of Semiconductor Surfaces" was held at the University of Pennsylvania, June 4th-6th, 1956. It was sponsored by the University, by the Office of Naval Research, and by the Lincoln Laboratory of MIT and was organized by a committee under the co-chairmanship of J. L. Jackson, R. H. Kingston, and P. H. Miller, Jr. 123 research workers participated by invitation, including many from abroad. The detailed proceedings of the Conference are being published by the University of Pennsylvania Press under the general editorship of R. H. Kingston. The present report is intended as a summary and is, as always in such circumstances, inescapably personal and necessarily incomplete.

Since surface properties are sensitive to contamination, two complementary lines of research have developed. In the conference program these were designated respectively as "clean surfaces" (free from contaminants and approaching perfect structure) and "real surfaces" (as encountered in practice and covered at least by an oxide film). Most of the investigations have been carried out on germanium (though certainly not all of them) since the bulk properties of this material are reasonably well understood.

The session on "clean surfaces" was under the chairmanship of J. Bardeen. C. Herring gave a general introduction to the theory of surface states, distinguishing between those which arise from surface imperfections and those associated with the perfect lattice. He discussed the origin of Tamm and Shockley levels and dealt with some of the practical complications which have to be envisaged, e.g., strain and the interaction of surface imperfections with one another.

Among the important problems under discussion was, of course, that of obtaining a really clean surface. This can be done, for instance, by cleaving a crystal in high vacuum, but experimental results of this kind were not available in time for the conference. Alternatively, a "real" surface can be subjected to a number of sputtering and annealing cycles, as described by R. E. Schlier and H. E. Farnsworth, who also showed how the resulting surfaces can be sensitively examined by means of low-energy electron diffraction.

Some recent measurements of the thermionic work function, photoconductance, surface conductance, and (transverse) field effect in ultra-high vacuum were discussed by P. Handler. A model was presented which accounted for the strong dependence of the observed effects on chemisorbed oxygen in terms of the unfilled germanium orbitals at the surface. R. H. Kingston then gave a brief historical review of the critical experiments which have served to establish our present picture of surface structure: the discovery of the inversion layer and injection, the demonstration of field effects, first studies of the oxide layer on germanium, and investigations of the surface conductance under static as well as transient conditions.

The sessions on "real surfaces" were under the chairmanship of A. F. Gibson and H. K. Henisch. Studies of lateral conduction within the inversion layer of a barrier call for a knowledge of the effective carrier mobility. This important quantity has to be calculated, and J. R. Schrieffer reviewed his analysis of the scattering and averaging problems involved. P. C. Banbury, G. G. E. Low, and J. D. Nixon dealt with the effect of capacitively applied fields on the surface conductance and surface recombination, with particular reference to the changes occurring within the first few hundred microseconds. The results have led to an evaluation of the capture cross section of surface states for majority carriers in n-type and p-type material. The surface states involved in these phenomena are designated as the "fast" states, to distinguish them from those which give rise to changes over a period of minutes or so. A. Many, E. Harnik, and Y. Margoninski described experiments in which the surface recombination velocity was measured as a function of barrier height, giving good agreement with theoretical expectations. Capture cross sections could again be evaluated. B. H. Schultz presented results on hole storage in a semiconducting

ANALYTICAL ENGINEERS

At Hawthorne, in Southern California, Northrop Aircraft has a continuing need for experienced engineers seeking new opportunities. There are attractive positions open in the following fields: Aerodynamics, Dynamics, Thermodynamics, Stress, Loads, Performance Analysis.

In Northrop's superbly equipped multi-milliondollar engineering and science center, now nearing completion, you will be given constantly fresh and challenging assignments. Present programs include Northrop's new supersonic trainer airplane, the Snark SM-62 intercontinental guided missile, plus advanced aircraft and missile projects yet to be revealed.

You'll be associated with a high-calibre engineering team that has established an outstanding record in aeronautical design and development. Your initiative and ideas will be recognized, encouraged and rewarded, for at Northrop Aircraft the progress of personnel is as important as the progress of projects.

Besides attractive remuneration, you will enjoy other benefits unexcelled in the entire industry—retirement plans, health and life insurance, college educational reimbursement plan, regular vacations plus extra year-end vacations with pay. Easily-reached mountain, desert and beach resorts in sunny Southern California offer year 'round attractions for you and your family.

You will find the career opportunity you are seeking at Northrop, pioneer in the design and production of all weather and pilotless aircraft. If you qualify for one of these attractive positions, contact the Manager of Engineering Industrial Relations, Northrop Aircraft, Inc., ORegon 8-9111, Extension 1893, or write to: 1015 East Broadway, Department 4600 W, Hawthorne, California.

NORTHROP

NORTHROP AIRCRAFT, INC., HAWTHORNE, CALIFORNIA

Producers of Scorpion F-89 Interceptors and Snark SM-62 Intercontinental Missiles

Scientists for basic research

Physicists, Physical Chemists & Physical Metallurgists

THE HONEYWELL Research Center offers physical scientists with graduate training or equivalent experience the opportunity to do fundamental research in semiconductors, solid state, and magnetic and dielectric materials. You will be encouraged to participate in planning the research program and to publish results of your individual research in professional journals. Typical of the topics of interest:

 electric conduction and electron scattering mechanisms • imperfections • infrared • surface studies • band theory of solids • ferrites and ferromagnetic alloys • high temperature materials • radiation damage • thermodynamics and differential thermal analysis • thermoelectric properties • oxidation studies

If you are interested in a career with a company whose sound growth is based on research, send a résumé to Dr. Finn J. Larsen, Director of Research, Dept. PY-10-236, Honeywell Research Center, Hopkins, Minnesota.

Honeywell

First in Controls

LIAISON ENGINEER for Weapons Systems

\$12,000

Major manufacturer of highly engineered electronic equipment is organizing a team of systems evaluation engineers to support a weapons system evaluation program. The team will synthesize weapons systems and consult with design groups.

The following areas of knowledge and experience will be important in the evaluation of a prospective employee's capabilities:

Engineering or physics degree.

Advanced degree in mathematics, engineering or physics.

Operational experience with weapons systems, aircraft or airborne electronic equipment.

Responsible participation in activities for planning, development, procurement, test and evaluation of weapons systems equipment.

Experience in planned advanced development study and proposal activities of military airframe and electronic producers.

This position is in a cosmopolitan city near the Adirondack resort area.

Reply in confidence to:

BOX 1056A

Physics Today, 57 E. 55 St., New York 22, N. Y.

plate as a function of plate thickness. The effective carrier lifetime was found to increase with diminishing plate thickness. Hole storage with delayed recombination is thus possible at the surface. Experiments of this kind, together with recently obtained information on the capture cross sections of surface states should soon make it possible to analyze the transient behavior of the surface recombination process in detail. There is as yet only partial agreement as regards the energetic distribution of these states, which implies some uncertainty as to whether the surfaces used in different experiments are really of identical structure. To clarify the problem of energy distribution, W. L. Brown, W. H. Brattain, C. G. B. Garrett, and H. C. Montgomery added capacitance measurements to the techniques more commonly employed, making use of the fact that the capacitance is not influenced by the carrier mobility. Capture cross sections of "fast states" were again deduced, in this case from measurements on transients performed throughout an oxidation cycle.

ytic P

reen

15, 2D

lemi

1 rela

pale

105, 2

ding

no tri

dring

doma:

z obta

teacti

gint

验日

105 00

域的

Setting.

tephe

hrist

The

erice

at the

100.20

SST

le pr

墨

a imp

nteed

i tert

1.H

協

)eatu)ead

la qu

曲

ande

nd F

2000

1000

70

iller.

the.

100

ide

仙

संस

I

I

Hog

01

H. Statz, G. A. de Mars, L. Davis, Jr., and A. Adams, Jr. reported experiments on the static and transient surface conductance of germanium and silicon and estimates for the energy distribution of the fast states which are also believed to be responsible for surface recombination. Certain interesting anomalies were observed in the presence of organic vapors. Experiments on the "slow states" which are thought to be located on the outside of the oxide film were reviewed by S. R. Morrison. The observed time relations are generally nonexponential and an analysis can be made in terms of the barrier height which governs the probability of charge transfer from the bulk material to these "slow states". The time constants involved have been studied in detail by M. Lasser, C. Wysocki, and B. Bernstein and were found to increase with increasing oxide thickness. The surface can in fact be stabilized by growing a thick oxide film. Problems connected with noise generation at semiconductor surfaces were reviewed and discussed by A. L. McWhorter, who also presented results which indicate that the fluctuating charge density in "slow states" is responsible for the so-called excess or 1/f noise found in germanium. The absolute magnitude of the 1/f noise in devices still represents an unsolved problem. In recent models, mentioned by Petritz, the noise energy is derived from the applied field. R. L. Petritz and W. W. Scanlon then presented experimental results relating to thin films of lead sulphide and also to surfaces on bulk crystals. These surfaces are evidently highly sensitive to changes of external environment.

A special session was devoted to problems connected with adsorption and catalysis, under the chairmanship of P. Agrain. In his introductory lecture, P. B. Weisz gave a general survey of catalytic phenomena. He also discussed some of the interesting results which arise from the fact that many large periodic structures (e.g., some organic molecules) have common energy levels and can, in a sense, be likened to semiconducting crystals. A contribution by K. Hauffe dealt with cata-

lytic processes which involve an electron exchange between the semiconductor surface and the surrounding gas, and with the dependence of these processes on the Fermi level at the surface. The general aim is, of course, to relate the observations on reaction kinetics to our knowledge of Fermi potentials, space charge distributions, and thermionic work functions. G. M. Schwab distinguished between donor reactions involving electron transfer to the catalyst, and acceptor reactions involving electron loss from the catalyst. He showed how information concerning the rate-determining step can be obtained from experiments in which the kinetics of a reaction are analyzed as a function of donor or acceptor impurity content. G. W. Pratt, Jr. and H. H. Holm reported observations of thermionic work functions on gold, germanium, and silicon as a function of the ambient atmosphere. It was shown that the slow changes of work function which can be stimulated by electrostatic fields or by illumination in a gas atmosphere are related to the changes of surface conductance observed by other workers and interpreted in terms of the "slow surface states".

The last session of the Conference was devoted to surface oxidation, under the chairmanship of W. H. Brattain. In the opening lecture, N. Cabrera pointed out that oxide formation depends initially on nucleation and only in the later stages on diffusion, two processes which may have very different activation energies. The presence of impurities and of surface imperfections, e.g., places where dislocations terminate, plays an important part in the formation of oxide nuclei, as, indeed, it does in etching treatments and perhaps also in certain forms of catalysis. M. Green, J. Kafalas, and P. H. Robinson described experiments in the course of which germanium crystals were first crushed in high vacuum and in which the subsequent oxygen uptake was kept under observation as a function of time, temperature, and pressure. The results have led to a proposed model for the structure of the first oxide layer. Its quantitative confirmation depends on the accuracy with which surface areas can be measured by independent methods, e.g., krypton adsorption. J. T. Law and P. S. Meigs have studied the oxidation rate of different crystal faces on germanium and have found that a protective surface film is formed after a few minutes at 700°C, after which the oxygen uptake ceases. The pressure dependence of the oxidation rate is entirely different below 500°C and above 550°C and different rate-controlling mechanisms have been suggested for these ranges. Above 550°C the oxidation rate becomes independent of crystal orientation. The session ended with concluding remarks by J. Bardeen on the Conference as a whole.

That there should have been so little overlap between numerous contributions on so narrow a subject bears eloquent testimony to the amount of planning and judgment exercised by the Committee. To the guest from abroad, the high standard maintained throughout and, amongst other things, the young average age of the participants were impressive features of the Con-

DU PONT

NOW HAS AVAILABLE

One Long-Range Career Opening in

OPERATIONS ANALYSIS STATISTICIANENGINEER

Duties include: statistical design and analysis of experiments; application of probability theory and statistical inference to production and management problems, ranging, as examples, from sales forecasting for production and inventory control to use of probability in setting optimum plant maintenance policies; and Operations Research—the mathematical and statistical formulation of production, marketing, and financial control problems prior to analysis by data processing systems. Operations are on a companywide basis.

Desired qualifications: A Ph.D. or equivalent in mathematical statistics or physical science (including engineering), with experience with and interest in practical design of experiment, mathematical statistics, or probability theory.

NEW YORK INTERVIEWS

Sun-Mon-Tues-Wed November 25-26-27-28

To arrange an appointment with our technical representative, please call Mr. K. S. Marlin, Jr. PEnnsylvania 6-5096

BOSTON INTERVIEWS

Sun-Mon-Tues-Wed Dec 9-10-11-12

To arrange an appointment with our technical representative, please call

Mr. K. S. Marlin, Jr. HAncock 6-2044

Or you may send complete resume, including details of education and experience, to:

Mr. K. S. Marlin, Jr., Engineering Department

E. I. du Pont de Nemours & Co., Inc.

Wilmington 98, Delaware

X-RAY DIFFRACTION AND FLUORESCENCE

Opening for responsible individual to take charge of new, well equipped x-ray laboratory in Midwest. Experience and interest required in metallurgical, corrosion, general diffraction problems and fluorescence applications. Submit replies to:

GOODYEAR ATOMIC CORPORATION

Employment Department Q P.O. Box 628 Portsmouth, Ohio

Complete Weather Stations

No. 1 Amateur Weather Station \$49.50

Maximum-Minimum Thermometer (#116). Rain and Snow

Maximum-Minimum Thermometer (#116). Rain and Snow Gage (#510). Hygrometer (#201). Baroguide (#311). Wind Vane (#430). Shelter (#175).

No. 2 High School Weather Station \$170.00

Maximum-Minimum Thermometer (#111). Rain and Snow Gage (#503). Sling Psychrometer (#208). Barometer, aneroid (#306). Anemometer (#401). Wind Vane (#425). Wind Indicator (#475).

No. 3 College Weather Station \$650.00

Maximum-Minimum Thermometers (#111). Thermograph (#156). Barograph (#352). Barometer, aneroid (#306). Rain and Snow Gage (#503). Sling Psychrometer (#208). Windial (#476).

No. 4 Professional Meteorological Station \$2750.00

Hygrothermograph (#255). Microbarograph (#355). Recording Rain Gage (#551). Aerovane Recording System (#4-141).

Science Associates

Instruments / Weather • Astronomy / Teaching Aids
194 Nassau Street, Princeton, N. J.

ference, with important and highly encouraging implications for the future. A banquet was held in the University Museum on the evening of the second day. It was a splendid occasion, cordial, hilarious, full of good fellowship and warmth which left only the surrounding Egyptian statues unmoved.

> H. K. Henisch University of Reading

1825 B

nd te

mdica

NOT.

gof !

it the

îne

1015

censio

enty

ur to

j jeco

med

The I

uchine.

schapi

ed to

35 Of

शिस,

应

The c

milet.

he par

THE !

refer.

la ge

leting

nia fu

1 565

atts

Itman

BI

the

BEION

onted

DW I

toling

plat et

ricity

acri

SSR

14 el

地面

mid

11 (2

One

沙田

lstael

When

ut

id

PER S

heat

R-j

00

Solar Energy

INTEREST in the direct utilization of solar energy is increasing rapidly. At a symposium in Wisconsin in 1953 and again in India in 1954 there was an attendance of about forty. At the conference on solar energy utilization in Arizona last November there were nearly a thousand registrants including 130 scientists from 31 foreign countries. The Ford Foundation, the Rockefeller Foundation, UNESCO and several agencies of the United States Government made possible the participation of the foreign guests.

The conferences were sponsored jointly by the newlyformed Association for Applied Solar Energy, the Stanford Research Institute, and the University of Arizona. Leaders in the organization plans were Merritt L. Kastens, Henry B. Sargent, and Louis W. Douglas. The conference attracted a great variety of people—physicists, chemists, biologists, engineers, and many observers, writers, industrialists, and businessmen who were keeping an eye on new developments in a field of expanding potentialities.

The conference was divided into three parts: The Scientific Basis at Tucson; The World Symposium on Applied Solar Energy at Phoenix; and the Solar Engineering Exhibition at Phoenix.

There was a great demand for places on the scientific programs at Tucson and it was necessary to hold several meetings simultaneously, morning, noon, and evening. It was unfortunate that these programs had to overlap in time and that there was insufficient time for discussion, but the program committee under the chairmanship of Edwin F. Carpenter did an effective job in making available many last-minute contributions. Over one hundred papers describing frontier researches were emphasized at Tucson, while thirty reviews and summaries, stressing practical applications, were given at Phoenix.

The Tucson program dealt with thermal, photochemical, and electrical processes. The thermal processes included flat-plate collectors, high-temperature furnaces, solar stoves, house-heating and cooling, solar power, and solar distillation of saline water; the photochemical processes covered algal culture and higher plants and nonbiological systems; and the electrical processes contained papers on thermal, photogalvanic, and photovoltaic systems.

There were many controversies, such as that between the advocates of flat-plate collectors for heating water and other liquids and the advocates of converging reflectors which can give higher temperatures. It may