

Vernet E. Eaton, named as 1955 Oersted Medallist by the American Association of Physics Teachers.

Oersted Medal

VERNET E. EATON, professor of physics at Wesleyan University, Middletown, Connecticut, was awarded the 1955 Oersted Medal of the American Association of Physics Teachers at the joint ceremonial session of the AAPT-APS meeting in New York City on January 28th. The award, consisting of a medal and certificate, is given annually for notable contributions to the teaching of physics.

Born and educated in Indiana, Professor Eaton re-

ceived his PhD in physics at Indiana University. He began his college teaching career in 1921 as an instructor at Williams College and since 1925 he has been a member of the Wesleyan physics department. Professor Eaton has served on the AAPT Executive Committee since 1951 and is also a member of the Association's committees on visual aids and on scientific apparatus. His other organizational affiliations include the American Association of University Professors and the American Physical Society. He was chairman of the APS New England Section in 1953–54.

In his Oersted Medal Address, Professor Eaton emphasized the need for introductory physics courses having a "solid core" structure based upon logic and characterized by rigor, simplicity, and imagination. The structure, he said, should be not only logical, but a work of art having "simplicity of line and absence of rococo". Laboratory work should provide the same kinds of problems as those likely to be met by professional scientists, he said, so that students might be faced with the failures, frustrations, and surprises typical of original investigations. "I would like to make a plea," he added, "that students not be asked to check the validity of laws that have been checked by generations of students and always found to be true. This is not only a deadly experience and a waste of time but it gives a false impression of the kind of thing a scientist really does in his laboratory."

LeRoy Apker, this year's recipient of the Oliver E. Buckley Solid State Physics Prize, awarded by the American Physical Society.

Buckley Prize

LEROY APKER, physicist at the General Electric Research Laboratory at Schenectady, has been awarded the American Physical Society's Oliver E. Buckley Solid State Physics Prize for 1955 in recognition of contributions to the understanding of the transfer of excitation energy in crystals. The prize, consisting of \$1000 and a certificate of award, is presented by the Society "to a person who has been adjudged to have made a most important contribution to the advancement of knowledge in solid state physics

within the five years immediately preceding the award". It was established four years ago under the terms of a \$50 000 endowment provided by the Bell Telephone Laboratories in honor of former Bell Labs President Oliver E. Buckley, who retired in 1952 after having served nearly four decades as scientist and administrator with the Bell System. The prize is administered by the APS and was presented to Dr. Apker at the banquet of the Society on January 28th during the Winter Meeting in New York City. Dr. Apker received his PhD at the University of Rochester in 1941 and since then has been a member of the G-E Research Laboratory staff.

The citation was based on a study of photoelectric effects in potassium iodide and rubidium iodide crystals by which it was shown that F-centers in the crystals were ionized by excitons produced in the absorption of light. Although earlier experimental results had indicated the presence or at least the initial formation of excitons, the study provided the first definite evidence of the movement of excitons through crystals and of the transfer of exciton energy to the F-centers. In accepting the award, Dr. Apker emphasized that the work mentioned in the citation had been done in collaboration with E. A. Taft of the G-E Research Laboratory. The study was reported in three papers by Apker and Taft: *Phys. Rev.* 79, 964–966 (1950); 81, 698–701 (1951); and 82, 814–819 (1951).