committee by invitation. Three of the nine men appointed by the AIP will be replaced each year so that each man will serve for three years.

The AIP committee held an organizational meeting on May 1, 1954, at the Bureau. In cooperation with the Bureau staff, it decided that it should devote most of its attention to three of the Bureau's 14 Divisions, namely Divisions 2, 3, and 4 which are concerned with Optics and Metrology, Heat and Power (including cryogenics) and Atomic and Radiation Physics. As a result the group divided into three panels, each of which will give particular attention to one of the Divisions.

The Committee chairmen met on August 15 to discuss intercommittee relations and agreed that it would be highly desirable to have members of one committee serve with the panels of another in cases in which individual interests evidently would make this profitable. For example, Mr. Sabine of the American Acoustical Society can serve very effectively on the panel of Division 6, devoted to Mechanics.

The Physics Committee held its first full-fledged meeting on November 13, at the Bureau. The morning session was spent with Dr. Astin, two of the Associate Directors, Drs. Brode and Huntoon, and six of the Division Chiefs, Drs. Alt, Brickwedde, Gardner, Ramberg, Silsbee and Taylor, in a detailed discussion of the Bureau's organization and operating problems. During the afternoon each of the three panels met with the heads of the Sections of the Divisions for which the panels have primary responsibility and discussed a wide variety of matters covering such topics as research programs, budget limitations, acquisition of new personnel, divisional meeting, and interdivisional cooperation.

It is felt that the Advisory Committee will aid the Bureau in many ways. Not only are the members experts in various fields of fundamental and applied physics, but many have first-hand experience in the problems of organizing, operating, and financing laboratories which can be added to the broad experience of the Bureau's excellent staff. Still further, the Committees provide a direct link between the typical Bureau scientist and engineer and his colleagues having parallel interest in other parts of the country. While membership in professional societies furnishes some of this, the committee pattern provides a far more intimate relationship.

It has already become evident to the AIP committee that the Bureau is operating under much too restricted a budget. This fact is clearly recognized by the Department of Commerce which authorized the Bureau last year to request from the Congress an increase in its budget of about 30 percent. Although only a fraction of the increase was allowed, the Department is actively supporting an even larger request for next year.

It is also evident to the Committee that the operations of the Bureau are greatly impeded by the fact that none of the funds allotted to it directly by the Congress have longevity beyond June 30 of the fiscal year in which the money is voted. This means, for example, that the Bureau is seriously restricted in employing new graduates of universities. It cannot make commitments in the spring, when most graduates seek jobs, for the following summer or fall, since the new positions cannot be guaranteed until the new budget is passed after July 1. This disadvantage and others related to it would be remedied if a fraction of the budget of the Bureau were given a lifetime beyond one year. It is important to note that this principle is now clearly recognized by the government in contracting for research and development. Most of the funds allocated directly to organizations such as the Office of Naval Research and the Office of Scientific Research of ARDC have a longevity of three years, once they have been contracted.

The financial problems of the Bureau represent, of course, only one facet of the important complex being considered by the Committees, although they are among the most obviously pressing ones at the moment. Viewed in the whole, the National Bureau of Standards is an essential national agency which has no counterpart in our country and which provides a unique service to our scientific and technical life. Any help and advice which the professional groups can give to make certain that it is rendering its service in the most effective and efficient manner can only act to strengthen our material fabric.

F. Seitz

Applied Mathematics Committee

A NOTHER part of the advisory committee organization mentioned above, the Technical Advisory Committee for the Applied Mathematics Division of NBS, is nominated by the Policy Committee of the Mathematical Societies of America, which was one of the eight organizations represented on the original Kelly Committee.

Although the advisory group primarily represents mathematicians, parts of the Applied Mathematics Division's work are of considerable interest in terms of physics and the Policy Committee consequently nominated two physicists, Philip M. Morse of Massachusetts Institute of Technology and Edward Teller of the University of California, to sit as members of the Advisory Committee. The other members are David Blackwell of Howard University, Mark Kac of Cornell University, Mina S. Rees of Hunter College, and A. H. Taub of the University of Illinois.

The latest meeting of the Committee was on October 23rd, at which time the work load of the Division was considered and the needs for new computing equipment were discussed. The Division deals with the computing and statistical problems of the Bureau and other governmental agencies and to some extent of research elsewhere in the country. It has four sections: a numerical analysis section; a statistical engineering laboratory; a mathematical physics section; and a computation laboratory, which puts out the NBS Mathematical Tables and programs and schedules the Bureau's high-speed computing machine, the SEAC.