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Battling Decoherence: 
The Fault-Tolerant 
Quantum Computer

Information carried by a quantum system has notoriously
weird properties. Physicists and engineers are now learn-

ing how to put that weirdness to work. Quantum computers, 
which manipulate quantum states rather than classical bits, 
may someday be able to perform tasks that would be in-
conceivable with conventional digital technology. (See the 
article by Charles H. Bennett, Physics Today, October 1995, 
page 24, and the “Search and Discovery” report in Physics 
Today, March 1996, page 21.)

Formidable obstacles must be overcome before large-scale 
quantum computers can become a reality (see the article by 
Serge Haroche and Jean-Michel Raimond, Physics Today, 
August 1996, page 51). A particularly daunting difficulty is 
that quantum computers are highly susceptible to making 
errors. The magical power of the quantum computer comes 
from its ability to process coherent quantum states; but such 
states are very easily damaged by uncontrolled interactions 
with the environment—a process called decoherence. In re-
sponse to the challenge posed by decoherence, the new dis-
cipline of quantum error correction has arisen at the inter-
face of physics and computer science. We have learned that 
quantum states can be cleverly encoded so that the debilitat-
ing effects of decoherence, if not too severe, can be resisted.

The power of the quantum computer
The indivisible unit of classical information is the bit, which 
takes one of the two possible values, 0 or 1. Any amount of 

classical information can be expressed as a sequence of bits. 
A classical computer executes a series of simple operations 
(often called “gates”), each of which acts on a single bit or 
pair of bits. By executing many gates in succession, the com-
puter can evaluate any Boolean function of a set of input bits.

Quantum information, too, can be reduced to elementary 
units, called quantum bits or qubits. A qubit is a two-level 
quantum system (like the spin of an electron). A quantum 
computer executes a series of elementary quantum gates, each 
of which is a unitary transformation that acts on a single qubit 
or pair of qubits. By executing many such gates in succession, 
the quantum computer can apply a complicated unitary 
transformation to a particular initial state of a set of qubits. 
Finally, the qubits can be measured; the measurement out-
come is the final result of a quantum computation.

A classical computer can faithfully simulate a quantum 
computer, so that anything the quantum computer could do, 
the classical computer could also do. Still, there is a sense 
in which the quantum computer appears to be a more pow-
erful device: Its simulation by the classical computer is very 
inefficient. The quantum state of even a modest number of 
qubits (let’s say 100) lives in a Hilbert space of unimaginably 
large dimension: 2100 ~ ​1030. To simulate a typical quantum 
computation, a classical computer would need to work with 
matrices of exponentially large size, which would take a very 
long time. In more physical terms, running a classical sim-
ulation of a quantum computer is hard because (as exempli-
fied by John Bell’s famous inequalities) correlations among 
quantum bits are qualitatively different from correlations 
among classical bits. The exponential explosion in the size of 
Hilbert space as we increase the number of qubits arises be-
cause the correlations among qubits are too weird to be ex-
pressed easily in classical language.

That simulating a quantum computer with a classical 
computer takes an unmanageably long time suggested to 

Quantum computers have the potential to do certain calculations faster than any 

foreseeable classical computers, but their success will depend on preserving complex 

coherent quantum states. Recent discoveries have shown us how to do that.
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with this introduction to an essential step in building a 

working quantum computer.
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Richard Feynman1 that using a quantum computer might 
enormously speed up finding solutions to certain hard com-
putational problems. David Deutsch,2 developing the idea 
further, observed that a quantum computer can invoke a 
kind of massive parallelism, by operating on a coherent su-
perposition of a vast number of classical states. In fact, a 
single computation acting on just 300 qubits can achieve the 
same effect as 2300 simultaneous computations acting on clas-
sical bits, more than the number of atoms in the visible uni-
verse. We could never build a conventional computer with 
that many processors!

Peter Shor3 discovered how, in principle, to apply quan-
tum parallelism to the problem of finding the prime factors 
of a large integer. The difficulty of factoring an integer esca-
lates very rapidly as the number of its digits increases. For 
example, suppose that we want to find the 65-digit prime 
factors of a 130-digit composite number. A network of hun-
dreds of powerful workstations, collaborating and commu-
nicating over the Internet and running the best algorithms 
known, might solve the problem in a few months. To factor 
a 400-digit number, the same network of workstations run-
ning the same algorithms would need about 10 billion years 
(the age of the universe). Even with vast improvements in 
technology, no one will be factoring 400-digit numbers using 
conventional computers anytime soon, unless there is an un-
expected algorithmic breakthrough.

But now suppose we have a quantum computer that runs 

just as fast as that network of workstations—that is, it can 
perform the same number per second of elementary opera-
tions on pairs of qubits as the classical computer can perform 
elementary logic gates on pairs of bits. That quantum com-
puter could factor the 130-digit number in a few seconds, and 
the 400-digit number in just minutes. Thanks to quantum 
parallelism, the difficulty scales in a much more reasonable 
way with the size of the input to the problem. For very large 
numbers, the advantage enjoyed by the quantum computer 
is truly stupendous.

The challenge of error correction
If quantum computers would be so marvelous, why don’t 
we just build one? There are technological challenges, to be 
sure. But are there any obstacles that might be fundamental 
matters of principle, that would prevent us from ever con-
structing a quantum computer?

In fact, there is a problem of principle that is potentially 
very serious: decoherence. Unavoidable interactions with the 
environment will cause the quantum information stored in a 
quantum computer to decay, thus inducing errors in the com-
putation. Decoherence occurs very rapidly in complex quan-
tum systems, which is why we never observe macroscopic 
superpositions (such as a coherent superposition of a live cat 
and a dead cat). If quantum computers are ever to be capable 
of solving hard problems, a means must be found to control 
decoherence and other potential sources of error.

FIGURE 1. DOOR NUMBER 1 or door 
number 2? To read quantum information 
reliably, we need to know how it was 
stored. We can represent an unknown 
quantum bit (qubit) as a colored ball 
placed in a box through one of two doors. 
The doors represent two ways of 
measuring the qubit (such as the axis 
along which to measure spin), and the two 
colors represent the possible outcomes of 
the measurement. If the ball is placed in 
the box through door 1, and then it is 
observed through door 2, the color of the 
ball that comes out of the box is random.



Errors can be a problem even for classical information. 
We all have bits that we cherish, while everywhere there are 
dragons lurking who delight in tampering with our bits. 
But we have learned some ways to protect classical infor-
mation from the dragons. If I have a bit with the value 0 that 
I want to preserve, then I can store two backup copies of 
the bit. Eventually, a dragon could come along and flip one 
of my three bits from 0 to 1. But I can employ a busy beaver 
to check the three bits frequently; when he finds that one 
has a different value than the others, he flips that bit so that 
all three match again. That way, as long as the dragon has 
not had a chance to flip two bits, the error can be corrected 
and the information will be protected.

We would like to apply the same principle of redundant 
storage to quantum information, but, because qubits are differ-
ent from classical bits, there are complications. We might visu-
alize a qubit as a colored ball, either red or green, concealed in 
a locked box, that can be opened through either of two doors. 
The doors represent two ways of measuring the qubit, just as 
we could measure the spin of an electron along either the z or 
the x axis; the two possible colors represent the possible out-
comes of the measurement. If we store a ball in the box through 
door 1 or door 2 and we later open the same door, we can re-
cover our bit and read it, just as we would read classical infor-
mation. But if we store the ball through door 1 and then open 
door 2, what comes out will be completely random (has equal 
probability of being red or green); the outcome tells us nothing 
about what we put inside the box (see figure 1). To read quan-
tum information reliably we need to know how it was stored; 
otherwise we are bound to damage it irrevocably.

The first problem we encounter in the battle against deco-
herence is that an unknown quantum state cannot be perfectly 
duplicated;4 hence we cannot safeguard a quantum computer 
against errors by storing backup copies of its state. Roughly 
speaking, the trouble is that to duplicate the information in 
a quantum box, a copier must open a door to see what is in-
side. If it just happens to open the same door that was used 
to store the information, it can make an accurate copy. But if 
it guesses wrong, it will irrevocably damage the information 
instead. We can clone a sheep, but not a qubit!

A second problem is that there are more things that can 
go wrong with quantum information than with classical in-
formation. The dragon might open door 1, change the color 
of the ball, and reclose the box—that would be a bit-flip error 
analogous to the errors that can afflict classical information. 
Or he might open door 2, change the color, and reclose the 
box—that would be a phase error, for which classical informa-
tion has no analog. The beaver needs to be able to fix the error 
without knowing ahead of time whether the dragon is going 
to use door 1 or door 2.

Third, whereas errors in classical information are discrete, 
errors in quantum information form a continuum. Rather than 
simply flipping a bit, the dragon might introduce a more subtle 
kind of error by performing the bit flip with some (small) prob-
ability amplitude ε. The beaver must be able to recover from 
that kind of small error; otherwise small errors will accumulate 
over time, eventually building up to become large errors.

Finally, to diagnose whether errors have occurred, the 
beaver must look at some qubits—and therefore must open 
some boxes. But quantum measurement necessarily disturbs 
the state that is being measured, so we worry that the beaver 
cannot check for errors without introducing further errors.

Quantum error-correcting codes
As recently as four years ago, the difficulties described 
above seemed highly discouraging. But in 1995, Shor and An-
drew Steane discovered5,6 that the obstacles were illusory—
that quantum error correction really is possible. Theirs is 
one of the most important discoveries about quantum in-
formation in recent years, and it can be expected to have 
far-reaching implications.

To appreciate the insights of Shor and Steane, let’s first 
consider how to defend quantum information against a 
dragon who performs only bit flips (we’ll return to the issue 
of phase errors shortly). We are to protect the state

		           a|0⟩ + b|1⟩,	�  (1)

a coherent superposition of the red (|0⟩) and green (|1⟩) states 
of a single qubit, where the complex coefficients a and b are 
unknown. Were the dragon to attack, the bit flip would trans-
form the state to

		           a|1⟩ + b|0⟩,	�  (2)

and damage would be inflicted unless a = ±b. The beaver’s 
assignment is to diagnose and reverse bit flips, but without 

{ { {{
a + b

FIGURE 2. ERROR CORRECTION by collective measurement 
preserves a coherent quantum state. The lurking dragon has 
flipped one of the three qubits. Measuring two qubits at a time 
(blue brackets), the busy beaver determines that the first and 
second qubits are different colors and that the second and third 
qubits are the same color. He then infers that the first bit has 
flipped, and repairs the damage.
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disturbing the delicate superposition state, that is 
without modifying a and b.

Well schooled in classical error correction, the 
beaver applies the principle of redundant stor-
age by encoding the qubit in a state of three qu-
bits. The red state is encoded as three red qubits, 
and the green state as three green qubits; that is,

	             
|0⟩ → |0⟩ ≡ |000⟩,
|1⟩ → |1⟩ ≡ |111⟩.	�  (3)

Thus the unknown superposition state becomes

          a|0⟩ + b|1⟩ → a|0⟩ + b|1⟩ = a|000⟩ + b|111⟩. � (4)

This redundant state is not the same as three 
identical copies of the original unknown state, 
which would be

            (a|0⟩ + b|1⟩)(a|0⟩ + b|1⟩)(a|0⟩ + b|1⟩). � (5)

Although it is impossible to copy unknown 
quantum information, nothing prevents us from 
building a (unitary) machine that will execute 
the encoding transformation given as equation 4.

Now suppose that the dragon flips one of the three qubits, 
let’s say the first one, so that the state becomes

		          a|100⟩ + b|011⟩,	�  (6)

and the beaver is to detect and reverse the damage. His first 
impulse would be to open the boxes and look to see if one 
ball was a different color from the others, just as he would to 
diagnose errors in classical information, but he must resist 
that temptation. If he were to open door 1 of all three boxes, 
he would find either |100⟩ (with probability |a|2), or |011⟩ (with 
probability |b|2); either way, the coherent quantum informa-
tion (the values of a and b) would be irrevocably lost.

But he is a clever beaver who knows he need not restrict 
his attention to single-qubit measurements. Instead, he per-
forms collective measurements on two qubits at once (see 
figure 2). The beaver asks whether the first two qubits have 
the same color or different colors, without trying to ascertain 
the color of either one. He finds that the colors are different. 
Then he asks whether the second and third qubits have the 
same color or different colors. He finds that the colors are the 
same. From the two measurement outcomes, the beaver in-
fers that the first qubit has flipped relative to the other two 
and should be flipped back to repair the damage. In execut-
ing this protocol, the beaver has not learned anything about 
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FIGURE 3. A QUANTUM CODE. It is possible to correct both bit-flip and phase-
flip errors by encoding one qubit of quantum information in a block of nine qubits. 
Collective measurements preserve unknown individual qubit states (represented 
by closed boxes). (a) Six two-qubit observables (such as the tensor product of Pauli 
matrices σz

(1) ⊗ ​σz
(2)) are measured to diagnose bit flips. (b) Two six-qubit observables 

(such as the tensor product of Pauli matrices σx
(1) ⊗ ​σx

(2) ⊗ ​σx
(3) ⊗ ​σx

(4) ⊗ ​σx
(5) ⊗ ​σx

(6)) are 
measured to diagnose phase flips. Entropy introduced by errors is extracted in the 
form of a random measurement record, which can be discarded.

Box 1. Fault Tolerance and Topology
Topological ideas arise naturally in the theory of fault toler-

ance. The topological properties of an object remain invari-
ant when we smoothly deform the object. Similarly, how a 
fault-tolerant gate acts on encoded information should remain 
unchanged when we deform the gate by introducing a small 
amount of noise. In seeking fault-tolerant implementations of 
quantum logic, we are led to contemplate physical interactions 
with a topological character. 

What comes quickly to mind is the Aharonov–Bohm effect. 
When an electron is transported around a magnetic flux tube, 
its wave function acquires a phase that depends only on the 
winding number of the electron about the solenoid; it is 
unmodified if the electron’s trajectory is slightly deformed. 
A device that processes quantum information by means of 
Aharonov– Bohm interactions would be intrinsically fault tol-
erant; accordingly, we would not need to implement a quan-
tum gate with great precision for it to act as we desire. 

Unfortunately, the Aharonov–Bohm effect is abelian, and 
we need noncommuting gates to build up a complex quantum 
computation. But it is possible in principle to devise two-di-
mensional spin systems that exhibit more intricate Aharonov–
Bohm phenomena; long-range quantum correlations in the 
ground state of such a system can induce topological interac-
tions among the localized quasiparticle excitations.12 In a suit-
able spin system, the Aharonov–Bohm interactions are ade-
quate for executing interesting computations like the quantum 
factoring algorithm. 

Such an implementation of quantum computation seems 
futuristic from the perspective of current technology, but it is 
conceptually important. If we could perform quantum logic by 
means of topological interactions, then we would be able to give 
the beaver a rest! We could protect encoded information not 
by vigilantly checking for errors and reversing them, but rather 
by weaving fault tolerance into the design of our hardware.
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the encoded state (the values of a and b), hence the recovery 
procedure itself has inflicted no damage.

The beaver won that round, but now the dragon tries a 
more subtle approach. Rather than flipping the first qubit, he 
rotates it only slightly, so that the three-qubit state becomes

   a|000⟩ + b|111⟩ → a|000⟩ + b|111⟩ + ε(a|000⟩ + b|111⟩) + O(ε2), �(7)

where |ε| ≪ 1. What should the beaver do now? In fact, he 
can do the same thing as before. If he performs a collective 
measurement on the first two qubits, then most of the time 
(with probability 1 − ​|ε|2), the measurement will project the 

damaged state (equation 7) back to the completely undam-
aged state (equation 4). Only much more rarely (with prob-
ability |ε|2) will the measurement project onto the state 
given as equation 6 with a bit-flip error. But then the mea-
surement outcome tells the beaver what action to take to re-
pair the damage, just as in the previous case.

Of the four difficulties for quantum error correction 
cited above, then, we have already seen how three can be 
overcome. We can encode a quantum state redundantly 
without violating the no-cloning principle. We can per-
form collective measurements that let us acquire informa-
tion about the nature of the errors without revealing any-

thing about the state, and so without 
damaging the state. We can control the 
accumulation of small errors by repeat-
edly making measurements that either 
reverse the damage or introduce large 
errors that we know how to correct. It 
remains only to resolve one more issue: 
the problem of phase errors.

Fixing phases
The code we have devised so far provides 
no protection against a dragon who flips 
the relative phase of |0⟩ and |1⟩. If such a 
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FIGURE 4. QUANTUM LOGIC of a collective 
measurement. (a) A controlled-NOT gate flips 
the target qubit if the control qubit (on top) 
is green. Otherwise, it acts trivially. (b) A 
collective observable of two data qubits 
(marked A and B) is measured by preparing 
an ancilla qubit, executing two controlled-
NOT gates, and then measuring the ancilla.

FIGURE 5. CODES WITHIN CODES. A single 
logical qubit is encoded in a block of five qubits. 
Each of the five qubits in that block, when 
inspected at higher resolution, is itself really  
a block of five qubits. And so on.
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dragon attacks any one of our three qubits, then our encoded 
state a|0⟩ + ​b|1⟩ is transformed to a|0⟩ − ​b|1⟩, and the en-
coded quantum information is damaged if a and b are both 
nonzero. But the method we developed to conquer the 
bit-flip errors can be extended to deal with phase errors as 
well—just as we protected against bit-flip errors by encoding 
bits redundantly, we can protect against phase-flip errors by 
encoding phases redundantly.

Following Shor,5 we may encode a single qubit using a 
block of nine qubits (see figure 3), according to

    
|0⟩ → |0⟩ ≡    1    (|000⟩ + |111⟩)(|000⟩ + |111⟩)(|000⟩ + |111⟩),

2³/²

    
|1⟩ → |1⟩ ≡    1    (|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩).

2³/²  �(8)

Both |0⟩ and |1⟩ consist of three clusters of three qubits 
each, with each cluster prepared in the same quantum state. 
Each of the clusters has triple-bit redundancy, so we can cor-
rect a single bit flip in any cluster by the method already 
discussed above.

Now suppose that a phase flip occurs in one of the clus-

ters. The error changes the relative sign of |000⟩ and |111⟩ in 
that cluster so that

		
|000⟩ + |111⟩ → |000⟩ − |111⟩,
|000⟩ − |111⟩ → |000⟩ + |111⟩.� (9)

The relative phase of the damaged cluster will now differ from 
the phases of the other two clusters. Thus, we can identify the 
damaged cluster, not by measuring the relative phase in each 
cluster (which would disturb the encoded information) but by 
comparing the phases of pairs of clusters—a six-qubit collective 
measurement. The measurement outcomes allow us to infer 
which cluster has a sign different from the others, and we may 
then apply a unitary phase transformation to one of the qubits 
in that cluster to reverse the sign and correct the error.

Error recovery will fail if there are two bit-flip errors in a 
single cluster (which would induce a phase error in the en-
coded data) or if phase errors occur in two clusters (which 
would induce a bit-flip error in the encoded data). But if the 
qubits interact only weakly with the environment and with 
one another, a double error will be relatively unlikely. Loosely 
speaking, if each qubit decoheres with a probability p and the 

Box 2. Experimental Quantum Error Correction
The first experimental demonstrations of 

quantum error correction, using the meth-
ods of nuclear magnetic resonance (NMR), 
were reported in the past year. In those exper-
iments, qubits were carried by nuclear spins 
that were manipulated by radiofrequency 
pulses, and quantum coding was used to pro-
tect a spin from dephasing. In an experiment 
by a group from Los Alamos National Labora-
tory and MIT,13 (schematically illustrated in the 
figure), two ancilla spins were provided, and 
the qubit to be protected was encoded in 
correlations among the three by means of a 
simple quantum circuit. The three spins were 
exposed to the dephasing dragon for a while, 
and then the qubit was decoded. The ancilla 
spins were measured to reveal whether a 
phase error had been sustained; if it had, the 
damage could be repaired. 

In an experiment conducted by a group 
from IBM/Almaden and Stanford University,14 
a two-qubit code that could detect a phase 
error in either qubit was used, and the output 
was rejected when an error was detected. In 
the cases in which no error was detected, an 
improvement in fidelity could be verified.

Quantum error correction demonstra-
tions that exploit the tools of quantum optics 
and atom trapping should be possible in the 
near future.15

R R

R R

R R
Encode

Phase errors

Measure
syndrome

Decode

PROTECTING A NUCLEAR SPIN from phase errors. First, some 
controlled-NOTs and some single-qubit quantum gates are executed to 
encode the spin to be protected (top left) in correlations with the two 
ancilla spins (shown below it). Then the three spins, now in an entangled 
state, are subjected to weak dephasing. Finally, the spins are decoded, 
and two are measured to extract a syndrome that diagnoses whether a 
phase error has occurred.
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decohering qubits are not strongly correlated, then the en-
coded information will decohere with a probability of order 
p2. For p sufficiently small, coding will improve the reliability 
of the quantum information.

The nine-qubit code is conceptually simple, but it is not 
the most efficient quantum code that can protect against an 
arbitrary error afflicting any one of the qubits in the code 
block. It turns out that a five-qubit code can be devised to 
accomplish the same thing.7 More sophisticated codes can be 
constructed that can protect against many damaged qubits in 
the code block.8

Collective measurement and fault tolerance
Collective measurements, which can diagnose errors with-
out damaging the coherence of the data, are crucial to quan-
tum error correction. Let’s consider more closely how collec-
tive measurements can be carried out. The beaver would like 
to learn, for example, whether boxes A and B (both opened 
through door 1) contain balls of the same color or different 
color, but he doesn’t want to find out the color of either ball.

To measure such collective observables, he will need a 
rudimentary quantum computer that can perform quantum 
logic gates in which two qubits come together and interact 
(see figure 4). A two-qubit gate that is particularly useful for 
this purpose is the controlled-NOT gate that acts according 
to this rule: If the first (control) qubit is |0⟩, then the gate acts 
trivially, but if the first qubit is |1⟩, the gate flips the value of 
the second (target) qubit.

When the beaver wants to measure the collective observ-
able, he first prepares a third (“ancilla”) qubit in the red state 
|0⟩. Then a quantum circuit is executed in which two succes-
sive controlled-NOT gates are performed, each with the an-
cilla as the target and with the successive qubits A and B as 
the controls. If qubits A and B have the same color, the color 
of the ancilla qubit is flipped either zero times or twice, so it 
is still red when measured; but if qubits A and B have differ-
ent colors, there is only one flip, and the ancilla becomes 
green. Measuring the ancilla reveals only the collective prop-
erty, not the colors of the two individual qubits.

The ancilla is an essential part of the quantum error cor-
rection procedure, because it serves as a repository for the 
entropy that is introduced into the code block by the errors—
it “heats” as the protected quantum system “cools.” To pro-
tect quantum information for a long time, we need a contin-
ual supply of fresh ancilla qubits. Alternatively, if the ancilla 
is to be recycled, it must be erased. The erasure is a dissipative 
process; that is why quantum (or classical) error correction 
requires the expenditure of power.

Since our quantum computer will not be flawless, errors 
might occur during the collective measurement. Therefore, 
we must be careful to design a protocol for error recovery 
that is fault tolerant, one that will still work effectively even 
if it is not executed perfectly. Indeed, fault-tolerant proto-
cols can be constructed both for error correction and for 
executing quantum gates that process the encoded informa-

tion.9 Box 1 on page 45 describes a topological approach to 
fault tolerance.

If we wish to perform a long quantum computation reli-
ably, we will need to use codes that can protect against many 
errors. One family of such codes can be envisioned as follows10 
(see figure 5): Suppose that we encode a single qubit in a block 
of five qubits. But each of those five qubits, when inspected 
more closely, is itself really another block of five, encoded as 
before. And so on. Such an intricate code requires substantial 
storage space, but in return we achieve high reliability. For an 
error to occur in the encoded qubit at the highest level, two 
qubits in the block of five would need to fail. And for either 
of those to fail, two would need to fail at the next level down. 
And so on. As we add more levels to the code, the probability 
of an error in the encoded qubit drops sharply.

Because of the overhead associated with processing en-
coded information, if our quantum hardware is highly inac-
curate, then coding alone may not improve the performance 
of a quantum computer. But when the hardware becomes 
reliable enough, an encoded block will be more resistant to 
error than a raw qubit. Then adding another level to the code 
will improve the accuracy further. By using a sufficiently 
complex code, we can make the error rate in the encoded data 
as small as we please.11

In principle, then, an arbitrarily long quantum computa-
tion can be performed reliably, provided that the average 
probability of error per elementary quantum gate is less than 
a certain critical value, the accuracy threshold. The numerical 
value of the accuracy threshold depends on the model of 
decoherence that we adopt, and on other characteristics of 
our hardware. If we assume that the quantum hardware is 
highly parallelizable (so that we can execute many quantum 
gates in a single time step), and that the qubits decohere more 
or less independently, then an error probability per gate of 
10−4 can be shown to be acceptable. (Roughly speaking, this 
error probability can be interpreted as the ratio of the time 
required to execute an elementary gate to the decoherence 
time of a single raw qubit.) Of course, to perform a longer 
computation, more redundancy will be needed for adequate 
reliability. But the required block size of the code grows at a 
modest rate with the length of the computation, as a power 
of a logarithm of the number of gates to be executed.11

Outlook
We may now claim to understand, in principle, how to fight 
off the destructive effects of decoherence. Though we may 
never see a real cat in a superposition of a dead state and a 
live state, someday we may be able to prepare an encoded 
cat that is half dead and half alive, and to maintain that mac-
roscopic superposition for as long as we please.

At present, though, quantum information technology re-
mains in its pioneering stage. It is currently possible to do ex-
periments involving a few qubits and a few quantum gates (box 
2 on page 47). For a quantum computer to compete with a 
state-of-the-art classical computer, we will need machines with 
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hundreds or thousands of qubits capable of performing mil-
lions or billions of operations. The technology clearly has far to 
go before quantum computers can assume their rightful place 
as the world’s fastest machines. But now that we know how to 
protect quantum information from errors, there are no known 
insurmountable obstacles blocking the path. Quantum com-
puters of the 21st century may well unleash the vast computa-
tional power woven into the fundamental laws of physics.

Apart from enabling a new technology, the discovery of 
fault-tolerant methods for quantum error correction and 
quantum computation may have deep implications for the 
future of physics. Efficient quantum algorithms (such as 
Shor’s factoring algorithm) demonstrate that quantum sys-
tems of modest size can behave in ways that classical systems 
could never imitate. What else might coherent quantum sys-
tems be capable of? In what ways will they surprise, baffle, 
and delight us? Armed with new tools for maintaining and 
controlling intricate quantum states, physicists of the next 
century will seek the answers.

REFERENCES
 ​1. ​�R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).

 ​2. ​�D. Deutsch, Proc. Roy. Soc. London, Ser. A 400, 96 (1985).
 ​3. ​�P. Shor, in Proc. of the 35th Annual Symp. on Foundations of Com-

puter Science, Los Alamitos, Calif., IEEE Press (1994), p. 124.
 ​4. ​�D. Dieks, Phys. Lett. A 92, 271 (1982). W. K. Wootters, W. H. Zurek, 

Nature 299, 802 (1982).
 ​5. ​�P. Shor, Phys. Rev. A 52, 2493 (1995).
 ​6. ​�A. M. Steane, Phys. Rev. Lett. 77, 793 (1996).
 ​7. ​�R. Laflamme, C. Miquel, J. P. Paz, W. Zurek, Phys. Rev. Lett. 77, 

198 (1996); C. Bennett, D. DiVincenzo, J. Smolin, W. Wootters, 
Phys. Rev. A 54, 3824 (1996).

 ​8. ​�A. R. Calderbank, P. W. Shor, Phys. Rev. A 54, 1098 (1996); A. M. 
Steane, Proc. Roy. Soc. London, Ser. A 452, 2551 (1996).

 ​9. ​�P. Shor, in Proc. of the 37th Annual Symp. on Foundations of Com-
puter Science, Los Alamitos, Calif., IEEE Press (1996), p. 56.

10. ​�E. Knill, R. Laflamme, https://arxiv.org/abs/quant-ph/9608012.
11. ​�E. Knill, R. Laflamme, W. Zurek, Proc. Roy. Soc. London, Ser. A 454, 

365 (1998); A. Yu. Kitaev, Russ. Math. Surveys 52, 1191 (1997); D. 
Aharonov, M. Ben-Or, in Proc. of the 29th Annual ACM Symp. on 
the Theory of Computing, New York, ACM (1997), p. 176; J. Preskill, 
Proc. Roy. Soc. London, Ser. A 454, 385 (1998).

12. ​�A. Yu. Kitaev, Ann. Phys. 303, 2 (2003); J. Preskill, in Introduction 
to Quantum Computation and Information, H.-K. Lo, T. Spiller, S. 
Popescu, eds., p. 213.

13. ​�D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. 
Zurek, T. F. Havel, S. S. Samaroo, Phys. Rev. Lett. 81, 2152 (1998).

14. ​�D. Leung, L. Vandersypen, X. Zhou, M. Sherwood, C. Yannoni, 
M. Kubinec, I. Chuang, Phys. Rev. A 60, 1924 (1999).

15. ​�C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, D. J. Wineland, 
Phys. Rev. Lett. 75, 4714 (1995); Q. A. Turchette, C. J. Hood, W. Lange, 
H. Mabuchi, H. J. Kimble, Phys. Rev. Lett. 75, 4710 (1995). � PT

JOIN US FOR SIGMA PI SIGMA’S

SUPPORTING PHASE SHIFTS

• 5 Plenary talks
• 2 Poster and art sessions
• Tours and workshops
• Student chapter showcase

• Lunch with Scientists and Engineers
• Career Expo and Grad fair
• Spooky Action-at-a-distance at UC Denver
• Spooky Science themed dance party

OCTOBER 30–NOVEMBER 1, 2025   ~  DENVER, COLORADO

2025 Physics & Astronomy Congress

sigmapisigma.org/congress/2025

REGISTRATION NOW OPEN!


