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NONINVERTIBLE
SYMMETRIES:
WHAT'S DONE
CANNOT BE UNDONE

Recent research has shown that the traditional notion
of symmetry is too limited. A new class of symmetries
is bringing surprising insights to quantum systems.
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ymmetry has long been a foundational concept
in theoretical physics and mathematics. It
simplifies complex physical problems and
reduces the number of unknown variables. You
would have a nightmare, for example, solving
the Schrodinger equation for the hydrogen
atom in Cartesian coordinates x, y, and z. But
the problem simplifies dramatically if you use spherical
coordinates and leverage the atom’s rotational symmetry: The
atom looks the same after it’s rotated about one of its axes.
Symmetry not only helps unify and organize the fundamental
forces of nature but also guides the search for new physics.
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NONINVERTIBLE SYMMETRIES

‘ ‘1e fundamental reason that
symmetries can be noninvertible

is quantum superpositio' '

Symmetry transformations are those that leave a system
looking and behaving the same. Conventional symmetry
transformations are invertible. If we rotate a square by 90°,
for example, the transformation can be undone by a -90°
rotation. Such intuition is formulated rigorously by Wig-
ner’s theorem, which implies that every symmetry transfor-
mation in quantum mechanics has an inverse. The mathe-
matical language used to describe conventional symmetry
transformations is called group theory, a foundational con-
cept that has shaped modern physics for more than a cen-
tury (see, for example, the article by Martin Rodriguez-Vega,
Maia Vergniory, and Greg Fiete, Puysics Topay, May 2022,
page 42).

One way only

In recent years, however, researchers have shown that the
traditional notion of symmetry is too limited in quantum
field theory and quantum many-body systems. A new class
of symmetries—noninvertible—has been identified in vari-
ous physical systems, including lattice models describing
magnetism and quantum field theories of strong interactions
between quarks. As the name suggests, noninvertible sym-
metries are implemented by transformations that do not have
inverses—that is, what’s done cannot be undone.

The fundamental reason that symmetries can be noninvert-
ible is quantum superposition. In deterministic classical phys-
ics, a catis either alive or dead. In quantum physics, Schroding-
er’s cat can be both alive and dead simultaneously. The
wavefunction describing Schrédinger’s cat is a superposition
of two individual wavefunctions—one for an alive cat and one
for a dead cat. Superposition introduces more possibilities for
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symmetries in quantum physics: A symmetry transformation
can cause the wavefunction of a single cat to become a super-
position of two. If the transformation is repeated, the result is
a superposition of increasingly many cat wavefunctions, and
no inverse transformation reverts to a single cat.

As paradoxical as it may sound, the new symmetries lead
to new conservation laws, which serve as novel tools to study
strongly coupled physical systems. They also point to alter-
native physical models and beg for a new mathematical
framework to describe symmetries in quantum physics.

Noninvertible symmetry of a magnet
Noninvertible symmetries already exist in physicists’ favorite
toy model for ferromagnetism: the Ising model in one spatial
dimension. The 1D model consists of an array of qubits
placed on a circle, as illustrated in figure 1. Each qubit can be
spin up |1), spin down [{), or any quantum superposition of
the up and down states, such as [=) «|T) + |{).

The state [TT---T), in which every spin is pointing up,
corresponds to a magnet whose north pole is pointing up.
Similarly, the state [l - - - 1) corresponds to a magnet whose
south pole is pointing up. On the other hand, the state

represents a superposition of all possible spin configurations.
Since that is a state with no preference for spin up or spin down,
magnetizationislost. The transition from 1T - - - T)to [> = - - - =)
models the process of heating up a magnet: As the temperature
reaches a critical value, the magnet loses its magnetization.
What are the symmetries in the toy model for a magnet?
Because the north and south poles are on the same footing,



an ordinary symmetry can transform one to the other. It flips
all the spins from up to down and vice versa: [TT---T) —
[JL---1) = |17 ---1). That is an invertible symmetry —apply
it twice, and we return to the starting point. The demagne-
tized state | — - - - =) is symmetric under the spin-flip sym-
metry because there is no notion of north versus south.

Atthe critical temperature, an additional symmetry emerges
whose effect is |TT---T)—>|>—>--->) and Il ---1)—>
|- — - - - =). The additional symmetry transformation acts iden-
tically on the up and down states, as illustrated in figure 2.
Whether the output state was initially in the up or down state
before the transformation isn’t knowable. Relatedly, if we apply
the transformation a second time, we find a superposition of
up and down states: [ —---—) - AR (1T D+ [ L),
The symmetry transformation cannot be inverted and thus it is
a noninvertible symmetry.

The technical details
We now examine more carefully the noninvertible symmetry
in the Ising model, which has L qubits, labeled by j=1,2, .. .,
L, arranged on a 1D closed, periodic ring. (It has a counterpart
in two dimensions.') On each qubit, a quantum operator,
denoted as Z, can be applied to measure the spin: Z|T) = +[T),
Z|l) =-|{). Alternatively, another quantum operator, denoted
as X, can be applied to flip the spin, where X|T) = [{), X|{) = |T).
If we represent a qubit’s spin-up and spin-down states as
two column vectors, (3) and (}), then the operators become the
Pauli matrices Z = (; })and X = (! ;). When we have multiple
qubits, we can similarly define zZ and X; as operators that mea-
sure or flip the jth qubit while leaving the others unchanged.
In quantum mechanics, the time evolution of a system is
governed by an operator called the Hamiltonian, which fea-
tures in the Schrédinger equation. At the critical temperature,
the Hamiltonian for the Ising model takes the form

L L
H=-— Zj:le - Zj:lz].zj+1 : @)

The first term models a transverse magnetic field, and the
second term models the coupling between the spins of neigh-
boring qubits.

What are the symmetries of the critical Ising model? A nec-
essary condition for a symmetry is that it must lead to a trans-
formation that leaves the Hamiltonian invariant. The Hamilto-
nian is invariant under the transformation X=X and Z--Z,.

That transformation is the spin-flip symmetry imple-
mented by the operator V=XX, . .. X,. It commutes with the
Hamiltonian, which means that it does not change over time.
In other words, it’s a conserved quantity.

Is there an additional symmetry in the Ising model? An-
other transformation that leaves the Hamiltonian invariant is

Xj - Zij+‘l , ZijH - X,‘+1 , 3)
which is known as the Kramers—Wannier transformation.?
What exactly do the arrows in equation 3 mean? Even though
the literature has commonly suggested that the Kramers—

FIGURE 1. THE ISING MODEL consists of an array of qubits
in one spatial dimension. Each one can be in a spin-up state
), a spin-down state |!), or a superposition of the two. The
model is an archetypal system that explores the differences
between ordinary, invertible symmetries and noninvertible
symmetries, which, once applied, cannot be undone.
(Ilustration by Three Ring Studio.)

Wannier transformation is invertible, it’s not. To see why, let
us assume that the transformation is implemented by conju-
gating an operator by an invertible operator U. The Kramers-
Wannier transformation would thus be written as

Uxu'£zz,,02z,U'LX,,. (4)

Let us apply the invertible transformation on the spin-flip
operator V of the Ising model: UVU'=U(X)X, ... X)U" =
(Z,Z,)(Z,Z,) .. .(Z,Z)) = 1, where in the last step, we have used
Z?=1. When we multiply by U™ from the left and U from the
right, the spin-flip operator V becomes a trivial operator,
which is a contradiction.

The Kramers—Wannier transformation, therefore, cannot
be implemented by an invertible operator, as Wigner’s theo-
rem suggests. Rather, the meaning behind the arrows in
equation 3 is answered by the following operator D:?

L
il L-1 ™ "ZZin inXy 1+ Hj=1 X]'

— 5 - T e 5

D=¢ "3 (nj:164e T )34 X 5 . ()

conserved but noninvertible

invertible but not conserved

It is rather complicated, but the only thing we need to know
is that D is a product of an invertible but not conserved operator
and a conserved but noninvertible operator. Because of the sec-
ond factor, D is a noninvertible matrix that has some zero eigen-
values. The noninvertible operator implements the Kramers—
Wannier transformation in the following precise sense:

DX,=ZZ

+1

D,DZZ,=X,D. (6)

'+1 1
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FIGURE 2. THE NONINVERTIBLE SYMMETRY operator D acts identically on different
states of a magnet. Whether D is applied to a magnet with a north pole (N) pointing up
or a south pole (S) pointing up, the result is the same: a demagnetized output state,
shown in black. When D is applied a second time, the magnet enters a quantum
superposition of the two initial states. (lllustration by Three Ring Studio.)

Since D! does not exist, however, the equation cannot be
written in the form of equation 4, and thus no contradiction
exists. The operator commutes with the Hamiltonian, and it
is therefore a conserved quantity that does not change over
time. It is a noninvertible symmetry.

The square of an ordinary symmetry is another symmetry:
If a 90° rotation is applied twice, the result is a 180° rotation.
But what about for the noninvertible symmetry? From equa-
tion 4, we see that applying D twice moves X; forward to site
j + 1. It appears that the noninvertible symmetry behaves like
a lattice translation by half a site. That’s inaccurate, however:
Nothing exists between two lattice sites!

In fact, the operator D, the spin-flip operator V, and the
one-site lattice translation operator T obey the algebraic rela-
tionDxD =T x (1+V)/2.

The action of D on a state, therefore, is conditioned on the
response of that state to the spin-flip symmetry. The square
of D corresponds to a one-site lattice translation T on states
that are symmetric under V, such as the state in equation 1.
But it is zero on states that flip signs under V. That algebra,
which was recently derived,® does not fit in the mathematical
framework of group theory and goes beyond the paradigm
of Wigner’s theorem. The new, noninvertible symmetry
brings fresh insights into physical systems more generally.

So what is it good for?

One important task in condensed-matter physics is to charac-
terize the phase diagram of a physical system. A familiar ex-
ample is water at atmospheric pressure, which has gas, liquid,
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and solid phases. The task is often challenging because of
strong interactions among the microscopic particles and
atoms. Symmetry provides one of the few powerful analytic
tools available to study such strongly coupled systems.

In particular, the noninvertible symmetries of systems that
are invariant under the Kramers-Wannier transformation
bring fresh insights into quantum systems. In the critical Ising
model and a large class of related models, for example, mag-
netization and demagnetization coexist, which implies non-
trivial entanglement properties. A formalization of that intu-
ition*” shows that the presence of a noninvertible symmetry
forbids a featureless phase in which there is no entanglement.
Moreover, the symmetry constrains the number of ground
states with the lowest energy. Such a constraint would not have
been possible if the Kramers—Wannier transformation were
mistaken for an ordinary, invertible symmetry.

For many years, the discussion of noninvertible symme-
tries was confined to toy models in one spatial dimension,
such as the Ising model for magnetization. A pair of papers®’
from a few years ago, however, led to many developments.
Inspired by earlier work,' they introduced a construction of
noninvertible symmetries applicable in three or more spatial
dimensions. The key to the construction was the connection
to another type of novel symmetry, known as the higher-form
symmetry, that acts on extended objects such as strings.!

Theideasled to a rapid discovery of new symmetries across
various physical systems, including quantum electrodynam-
ics.’>”® The symmetries provide tantalizing insights into other
topics too, including particle physics; point to mistakes in the



literature on scattering amplitudes;'* and consolidate conjec-
tures in quantum gravity and string theory. Beyond high-en-
ergy physics, noninvertible symmetries have also been applied
to lattice models in condensed-matter theory and quantum
information, which has led to the discovery of novel topolog-
ical phases of quantum matter and constraints on phase dia-
grams. The new symmetries have emerged as a unifying lan-
guage that brings together researchers of high-energy physics,
condensed matter, and quantum information.

The idea of the noninvertible symmetry has emerged
from interdisciplinary developments in physics and math.
Because it goes beyond the framework of group theory, it
calls for a new mathematical language. In some cases, the
correct language has been identified as category theory, a
generalization of group theory. Such advancements are fos-
tering vibrant collaborations between mathematicians and
physicists and mark a new chapter in the alignment of the
two fields.

Throughout history, symmetries have contributed to
major breakthroughs in physics. The symmetry discovered
in 1941 by Kramers and Wannier? is now understood as a
special example of noninvertible symmetries, and it pre-
dicted the critical temperature of the Ising model. The result
encouraged Lars Onsager in 1944 to find the exact solution
of the Ising model.” In recent years, the discovery and appli-
cation of new noninvertible symmetries has led to a wave of

progress across various areas of physics, and many more
promising breakthroughs are on the horizon.
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