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NONINVERTIBLE 
SYMMETRIES:
WHAT'S DONE  

CANNOT BE UNDONE

Shu-Heng Shao

Recent research has shown that the traditional notion 
of symmetry is too limited. A new class of symmetries 

is bringing surprising insights to quantum systems.
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ymmetry has long been a foundational concept 
in theoretical physics and mathematics. It 
simplifies complex physical problems and 
reduces the number of unknown variables. You 
would have a nightmare, for example, solving 
the Schrödinger equation for the hydrogen 
atom in Cartesian coordinates x, y, and z. But 

the problem simplifies dramatically if you use spherical 
coordinates and leverage the atom’s rotational symmetry: The 
atom looks the same after it’s rotated about one of its axes. 
Symmetry not only helps unify and organize the fundamental 
forces of nature but also guides the search for new physics.



Symmetry transformations are those that leave a system 
looking and behaving the same. Conventional symmetry 
transformations are invertible. If we rotate a square by 90°, 
for example, the transformation can be undone by a −90° 
rotation. Such intuition is formulated rigorously by Wig-
ner’s theorem, which implies that every symmetry transfor-
mation in quantum mechanics has an inverse. The mathe-
matical language used to describe conventional symmetry 
transformations is called group theory, a foundational con-
cept that has shaped modern physics for more than a cen-
tury (see, for example, the article by Martin Rodriguez-Vega, 
Maia Vergniory, and Greg Fiete, Physics Today, May 2022, 
page 42).

One way only
In recent years, however, researchers have shown that the 
traditional notion of symmetry is too limited in quantum 
field theory and quantum many-body systems. A new class 
of symmetries—noninvertible—has been identified in vari-
ous physical systems, including lattice models describing 
magnetism and quantum field theories of strong interactions 
between quarks. As the name suggests, noninvertible sym-
metries are implemented by transformations that do not have 
inverses—that is, what’s done cannot be undone.

The fundamental reason that symmetries can be noninvert-
ible is quantum superposition. In deterministic classical phys-
ics, a cat is either alive or dead. In quantum physics, Schröding-
er’s cat can be both alive and dead simultaneously. The 
wavefunction describing Schrödinger’s cat is a superposition 
of two individual wavefunctions—one for an alive cat and one 
for a dead cat. Superposition introduces more possibilities for 

symmetries in quantum physics: A symmetry transformation 
can cause the wavefunction of a single cat to become a super-
position of two. If the transformation is repeated, the result is 
a superposition of increasingly many cat wavefunctions, and 
no inverse transformation reverts to a single cat.

As paradoxical as it may sound, the new symmetries lead 
to new conservation laws, which serve as novel tools to study 
strongly coupled physical systems. They also point to alter-
native physical models and beg for a new mathematical 
framework to describe symmetries in quantum physics.

Noninvertible symmetry of a magnet
Noninvertible symmetries already exist in physicists’ favorite 
toy model for ferromagnetism: the Ising model in one spatial 
dimension. The 1D model consists of an array of qubits 
placed on a circle, as illustrated in figure 1. Each qubit can be 
spin up |↑⟩, spin down |↓⟩, or any quantum superposition of 
the up and down states, such as |→⟩ ∝ |↑⟩ + |↓⟩.

The state |↑↑ · · · ↑⟩, in which every spin is pointing up, 
corresponds to a magnet whose north pole is pointing up. 
Similarly, the state |↓↓ · · · ↓⟩ corresponds to a magnet whose 
south pole is pointing up. On the other hand, the state 

|→ → · · · →⟩ ∝ ​|↑↑ · · · ↑⟩ + |↓ ↑ · · · ↑⟩ + |↑ ↓ · · · ↑⟩ + · · · + |↓↓ · · · ↓⟩ (1)

represents a superposition of all possible spin configurations. 
Since that is a state with no preference for spin up or spin down, 
magnetization is lost. The transition from |↑↑ · · · ↑⟩ to  |→ → · · · →⟩ 
models the process of heating up a magnet: As the temperature 
reaches a critical value, the magnet loses its magnetization.

What are the symmetries in the toy model for a magnet? 
Because the north and south poles are on the same footing, 

The fundamental reason that 
symmetries can be noninvertible  

is quantum superposition.
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an ordinary symmetry can transform one to the other. It flips 
all the spins from up to down and vice versa: |↑↑ · · · ↑⟩ → 
|↓↓ · · · ↓⟩ → |↑↑ · · · ↑⟩. That is an invertible symmetry—apply 
it twice, and we return to the starting point. The demagne-
tized state |→ → · · · →⟩ is symmetric under the spin-flip sym-
metry because there is no notion of north versus south.

At the critical temperature, an additional symmetry emerges 
whose effect is |↑↑ · · · ↑⟩ → ​|→ → · · · →⟩ and |↓↓ · · · ↓⟩ → ​
|→ → · · · →⟩. The additional symmetry transformation acts iden-
tically on the up and down states, as illustrated in figure 2. 
Whether the output state was initially in the up or down state 
before the transformation isn’t knowable. Relatedly, if we apply 
the transformation a second time, we find a superposition of 
up and down states: |→ → · · · →⟩ → ​1/√2 (|↑↑ · · · ↑⟩ + |↓↓ · · · ↓⟩). 
The symmetry transformation cannot be inverted and thus it is 
a noninvertible symmetry.

The technical details
We now examine more carefully the noninvertible symmetry 
in the Ising model, which has L qubits, labeled by j = 1, 2, . . ., 
L, arranged on a 1D closed, periodic ring. (It has a counterpart 
in two dimensions.1) On each qubit, a quantum operator, 
denoted as Z, can be applied to measure the spin: Z|↑⟩ = +|↑⟩, 
Z|↓⟩ = −|↓⟩. Alternatively, another quantum operator, denoted 
as X, can be applied to flip the spin, where X|↑⟩ = |↓⟩, X|↓⟩ = |↑⟩.

If we represent a qubit’s spin-up and spin-down states as 
two column vectors,  and , then the operators become the 
Pauli matrices  and . When we have multiple 
qubits, we can similarly define Zj and Xj as operators that mea-
sure or flip the jth qubit while leaving the others unchanged.

In quantum mechanics, the time evolution of a system is 
governed by an operator called the Hamiltonian, which fea-
tures in the Schrödinger equation. At the critical temperature, 
the Hamiltonian for the Ising model takes the form 

The first term models a transverse magnetic field, and the 
second term models the coupling between the spins of neigh-
boring qubits.

What are the symmetries of the critical Ising model? A nec-
essary condition for a symmetry is that it must lead to a trans-
formation that leaves the Hamiltonian invariant. The Hamilto-
nian is invariant under the transformation Xj → Xj and Zj → −Zj . 

That transformation is the spin-flip symmetry imple-
mented by the operator V = X1X2 . . . XL. It commutes with the 
Hamiltonian, which means that it does not change over time. 
In other words, it’s a conserved quantity.

Is there an additional symmetry in the Ising model? An-
other transformation that leaves the Hamiltonian invariant is 

		    Xj → ​ZjZj+1 , ZjZj+1 → ​Xj+1 ,� (3) 

which is known as the Kramers–Wannier transformation.2 
What exactly do the arrows in equation 3 mean? Even though 
the literature has commonly suggested that the Kramers–

Wannier transformation is invertible, it’s not. To see why, let 
us assume that the transformation is implemented by conju-
gating an operator by an invertible operator U. The Kramers–
Wannier transformation would thus be written as 

	           UXjU−1 ≟ ZjZj+1 , UZjZj+1U−1 ≟ ​Xj+1 . � (4)

Let us apply the invertible transformation on the spin-flip 
operator V of the Ising model: UVU−1 = U(X1X2 . . . XL)U−1 =  
(Z1Z2)(Z2Z3) . . . (ZLZ1) = 1, where in the last step, we have used 
Zj

2 = 1. When we multiply by U−1 from the left and U from the 
right, the spin-flip operator V becomes a trivial operator, 
which is a contradiction.

The Kramers–Wannier transformation, therefore, cannot 
be implemented by an invertible operator, as Wigner’s theo-
rem suggests. Rather, the meaning behind the arrows in 
equation 3 is answered by the following operator D:3 

It is rather complicated, but the only thing we need to know 
is that D is a product of an invertible but not conserved operator 
and a conserved but noninvertible operator. Because of the sec-
ond factor, D is a noninvertible matrix that has some zero eigen-
values. The noninvertible operator implements the Kramers– 
Wannier transformation in the following precise sense: 

	             DXj = ZjZj+1D , DZjZj+1 = Xj+1D . � (6)

FIGURE 1. THE ISING MODEL consists of an array of qubits 
in one spatial dimension. Each one can be in a spin-up state 
|↑⟩, a spin-down state |↓⟩, or a superposition of the two. The 
model is an archetypal system that explores the differences 
between ordinary, invertible symmetries and noninvertible 
symmetries, which, once applied, cannot be undone. 
(Illustration by Three Ring Studio.)
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X
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Since D−1 does not exist, however, the equation cannot be 
written in the form of equation 4, and thus no contradiction 
exists. The operator commutes with the Hamiltonian, and it 
is therefore a conserved quantity that does not change over 
time. It is a noninvertible symmetry.

The square of an ordinary symmetry is another symmetry: 
If a 90° rotation is applied twice, the result is a 180° rotation. 
But what about for the noninvertible symmetry? From equa-
tion 4, we see that applying D twice moves Xj forward to site 
j + 1. It appears that the noninvertible symmetry behaves like 
a lattice translation by half a site. That’s inaccurate, however: 
Nothing exists between two lattice sites!

In fact, the operator D, the spin-flip operator V, and the 
one-site lattice translation operator T obey the algebraic rela-
tion D × D = T × (1 + V)/2.

The action of D on a state, therefore, is conditioned on the 
response of that state to the spin-flip symmetry. The square 
of D corresponds to a one-site lattice translation T on states 
that are symmetric under V, such as the state in equation 1. 
But it is zero on states that flip signs under V. That algebra, 
which was recently derived,3 does not fit in the mathematical 
framework of group theory and goes beyond the paradigm 
of Wigner’s theorem. The new, noninvertible symmetry 
brings fresh insights into physical systems more generally.

So what is it good for?
One important task in condensed-matter physics is to charac-
terize the phase diagram of a physical system. A familiar ex-
ample is water at atmospheric pressure, which has gas, liquid, 

and solid phases. The task is often challenging because of 
strong interactions among the microscopic particles and 
atoms. Symmetry provides one of the few powerful analytic 
tools available to study such strongly coupled systems.

In particular, the noninvertible symmetries of systems that 
are invariant under the Kramers–Wannier transformation 
bring fresh insights into quantum systems. In the critical Ising 
model and a large class of related models, for example, mag-
netization and demagnetization coexist, which implies non-
trivial entanglement properties. A formalization of that intu-
ition4-7 shows that the presence of a noninvertible symmetry 
forbids a featureless phase in which there is no entanglement. 
Moreover, the symmetry constrains the number of ground 
states with the lowest energy. Such a constraint would not have 
been possible if the Kramers–Wannier transformation were 
mistaken for an ordinary, invertible symmetry.

For many years, the discussion of noninvertible symme-
tries was confined to toy models in one spatial dimension, 
such as the Ising model for magnetization. A pair of papers8,9 
from a few years ago, however, led to many developments. 
Inspired by earlier work,10 they introduced a construction of 
noninvertible symmetries applicable in three or more spatial 
dimensions. The key to the construction was the connection 
to another type of novel symmetry, known as the higher-form 
symmetry, that acts on extended objects such as strings.11

The ideas led to a rapid discovery of new symmetries across 
various physical systems, including quantum electrodynam-
ics.12,13 The symmetries provide tantalizing insights into other 
topics too, including particle physics; point to mistakes in the 

FIGURE 2. THE NONINVERTIBLE SYMMETRY operator D acts identically on different 
states of a magnet. Whether D is applied to a magnet with a north pole (N) pointing up 
or a south pole (S) pointing up, the result is the same: a demagnetized output state, 
shown in black. When D is applied a second time, the magnet enters a quantum 
superposition of the two initial states. (Illustration by Three Ring Studio.)
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literature on scatt ering amplitudes;14 and consolidate conjec-
tures in quantum gravity and string theory. Beyond high-en-
ergy physics, noninvertible symmetries have also been applied 
to latt ice models in condensed-matt er theory and quantum 
information, which has led to the discovery of novel topolog-
ical phases of quantum matt er and constraints on phase dia-
grams. The new symmetries have emerged as a unifying lan-
guage that brings together researchers of high-energy physics, 
condensed matt er, and quantum information.

The idea of the noninvertible symmetry has emerged 
from interdisciplinary developments in physics and math. 
Because it goes beyond the framework of group theory, it 
calls for a new mathematical language. In some cases, the 
correct language has been identifi ed as category theory, a 
generalization of group theory. Such advancements are fos-
tering vibrant collaborations between mathematicians and 
physicists and mark a new chapter in the alignment of the 
two fi elds.

Throughout history, symmetries have contributed to 
major breakthroughs in physics. The symmetry discovered 
in 1941 by Kramers and Wannier2 is now understood as a 
special example of noninvertible symmetries, and it pre-
dicted the critical temperature of the Ising model. The result 
encouraged Lars Onsager in 1944 to fi nd the exact solution 
of the Ising model.15 In recent years, the discovery and appli-
cation of new noninvertible symmetries has led to a wave of 

progress across various areas of physics, and many more 
promising breakthroughs are on the horizon.
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