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T
he principle of superposition is a cornerstone of quan-
tum mechanics. It says that when two evolving states 
solve the Schrödinger equation, any linear combina-
tion of the two is also a solution. For that reason, waves 
from the two slits in the double-slit experiment simply 
add together to create the familiar interference pattern. 

As it happens, the superposition principle also prohibits the 
arbitrary copying of quantum states.

Linearity, unitarity, and cloning
To see why, imagine a machine that copies the state of a photon 
or an electron. When the original enters, two copies come out, 
each having the same state as the original. If such a machine 
were successful, it would convert the state |♢⟩ to |♢♢⟩ and |♡⟩ 
to |♡♡⟩, where the fanciful symbols |♢⟩ and |♡⟩ represent arbi-
trary states. The problem arises when we send a linear combi-
nation, |s⟩ = a|♢⟩  + b|♡⟩, through the hypothetical cloner. If |♢⟩ 
and |♡⟩ are cloned correctly, then because of the linearity of 
quantum mechanics, the output for their superposition must 
be the superposition of the outputs, |e⟩ = a|♢♢⟩  + b|♡♡⟩. But we 
want |s⟩|s⟩ = (a|♢⟩  + b|♡⟩)(a|♢⟩  + b|♡⟩), the original and a copy of 
|s⟩. That is not the state |e⟩ we get! The figure illustrates the 
general argument with a specific example.

The difficulty stems from the inherent nonlinearity of copy-
ing: When one asks for “two of the same,” a square |s⟩|s⟩ of the 
original |s⟩ is requested. The desire for a squared state is in 
conflict with the strict linearity of quantum theory. As a result, 
a single cloner cannot make a perfect copy of every quantum 
state. So what states can it clone?

Thus far, we have considered the linearity of quantum me-
chanics. But quantum evolutions preserve probability. The 
norm ⟨e|e⟩ of the state emerging from the copier must be the 
same as ⟨s|s⟩ of the original. The only difference between the 
two norms, expressed in terms of |♢⟩ and |♡⟩, is in the cross 
term. Thus the equation ⟨♡|♢⟩ = ⟨♡|♢⟩2 must be satisfied by 
any two states that are perfectly copied. That simple equa-
tion has profound consequences: It shows that a quantum 
copier can work only when the possibilities for the original are 
orthogonal—that is, the scalar product ⟨♡|♢⟩ vanishes.

One reaches the same conclusion after recognizing that 
quantum evolutions are unitary—they preserve the scalar 
product of any two states. So for states that can be copied, one 
again gets ⟨♡|♢⟩ = ⟨♡|♢⟩2. That is no surprise; unitarity follows 
from linearity and preservation of the norm.

Quantum evolutions are reversible, so one can imagine 
running the copier in reverse to delete the extra copy in states 

such as |♢♢⟩ or |♡♡⟩. Since uncopying also preserves the scalar 
product, it follows that perfect copying or deleting is possible 
only for sets of states that are orthogonal.

The optimistic assumption that a copier will work according 
to specs for the arbitrary states |♢⟩ and |♡⟩ was naive. Perfect 
copying can be achieved only when the two states are orthog-
onal, and even then one can copy those two states (or perhaps 
a larger collection of mutually orthogonal states) only with a 
copier specifically built for that set of states. Thus, for example, 
one can design a copier for any orthogonal pair of polarization 
states of a photon, but a copier that works for {|↕⟩, |↔⟩} will fail 
for {|⤡⟩, |⤢⟩}, and vice versa.

In sum, one cannot make a perfect copy of an unknown 
quantum state, since, without prior knowledge, it is impossible 
to select the right copier for the job. That formulation is one 
common way of stating the no-cloning theorem.

Quantum cryptography
The impossibility of cloning may seem at first an annoying restric-
tion, but it can also be used to one’s advantage—for instance, in a 
quantum key distribution scheme devised by Charles Bennett and 
Gilles Brassard in 1984. The idea is for the sender, Alice, to trans-
mit many photons to the receiver, Bob, with the aim of ultimately 
creating a shared, secret, random string of zeros and ones. Such a 
random string can later be used as a key for encrypting and de-
crypting messages. For example, armed with a coded binary 
message and the key, Bob can decode the message by reversing 
the binary ciphers in all the positions where the key has a “1.”

In the Bennett–Brassard scheme, each of Alice’s photons is 
prepared at random in one of four possible polarization states: 
|↕⟩, |↔⟩, |⤡⟩, or |⤢⟩. An eavesdropper, Eve, would like to get a 
copy of each photon for herself, but she also wants to pass an 
accurate copy on to Bob, or else her presence will be detected 
later when Alice and Bob check a random sample to see if Eve 
has disturbed their signals. Notice, though, that because of the 
no-cloning theorem, Eve cannot succeed in her task. As dis-
cussed earlier, if her cloning device can successfully copy the 
vertical and horizontal polarizations, it will fail to copy faith-
fully either of the two diagonal polarizations. Thus the prohi-
bition against cloning helps preserve privacy.

Although Eve cannot perfectly copy the photons Alice 
sends to Bob, she can, in fact, do a pretty good job of approxi-
mately cloning Alice’s transmission. Indeed, optimal approxi-
mate cloning is, in principle, one of the best methods Eve can 
use against quantum cryptography. Fortunately for Alice and 
Bob, it is possible to place strict theoretical limits on the fidelity 
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of any such copying scheme. The study of approximate cloning 
is currently an active area of both theoretical and experimental 
research and is discussed in detail in the additional resources 
provided at the end of this Quick Study.

Causality, copying, and collapse
If cloning were possible, one could communicate instantaneously 
over a distance. Suppose Alice and Bob share two photons in 
the entangled polarization state, |ζ⟩ = (|↔↕⟩  –  |↕↔⟩)/√2. The state 
|ζ⟩ can be expressed in any orthogonal basis with the paired 
polarization states always oriented along perpendicular axes; 
for example, |ζ⟩ = (|⤡⤢⟩  –  |⤢⤡⟩)/√2. So to send information to 
Bob, Alice might measure her photon in one of two bases, {|↕⟩, 
|↔⟩} or {|⤡⟩, |⤢⟩}, her choice of basis encoding “0” or “1.” Alice's 
measurement collapses |ζ⟩ into an eigenstate of the polarization 
she measures. If she chooses “0,” Bob’s photon will end up either 
|↔⟩ or |↕⟩, whereas “1” prepares it in one of the diagonal states.

In view of the collapse induced by Alice’s measurement, Bob’s 
photon, in a sense, gets the message. But Bob doesn’t. He cannot 
simply ask his photon, “What’s your state?” A quantum measure-
ment is a multiple-choice test. It poses questions such as, “Are you 
|↕⟩ or |↔⟩?” Eigenstates of the measured observable are the only 
legal answers. If he wrongly measures in the basis complementary 
to that selected by Alice, Bob will randomize the state of his pho-

ton and, in effect, erase Alice’s message. And to choose correctly, 
he needs to know the message. That’s the proverbial catch-22.

Direct measurement fails, but what if Bob were able to clone 
his photon first? Copying |↕⟩ or |⤡⟩ into |↕↕↕. . .⟩ or |⤡⤡⤡. . .⟩ 
would introduce valuable redundancy. Even a “wrong measure-
ment” on some of the copies would not erase Alice’s message, 
as other copies would remain for Bob to query with comple-
mentary questions. And the right question would lead to a con-
sensus; all copies would give the same answer in the multiple-
choice test. Many copies of his photon would thus allow Bob 
to find out the state and thereby read Alice’s message. But as 
noted earlier, amplification requires a copier tailored to the right 
basis. So the superluminal communication-via-cloning scheme 
is foiled by the no-cloning theorem.

What if Bob uses a copier for, say, just the basis {|↕⟩, |↔⟩}? If 
Alice sends “0,” the copier works. But for the diagonal input 
states (|↕⟩ ± |↔⟩)/√2, it produces (|↕↕↕. . .⟩ ± |↔↔↔. . .⟩)/√2. The 
two multiphoton states are equally probable and determined 
by the measurement at Alice’s end. That state of affairs is in-
distinguishable from what happens when Alice sends “0” and 
Bob’s properly working copier is equally likely to generate 
|↕↕↕. . .⟩ or |↔↔↔. . .⟩. The bottom line is that Bob’s basis-specific 
copier is of no use for communication.

Nevertheless, the redundancy in states like (|↕↕↕. . .⟩ ± 
|↔↔↔. . .⟩)/√2 is of interest, as it sheds light on the origin of the 
“collapse” in quantum measurements. Each such state looks, 
to the casual observer, like many copies of just one preferred 
polarization. For example, (|↕↕↕. . .⟩ ​+ ​|↔↔↔. . .⟩)/√2 is a super-
position of many copies of two polarizations. Yet if Bob detects 
any one of the photons in, say, the state |↔⟩, all the other pho-
tons will agree, just as when Alice sends a “0.” The branch 
|↕↕↕. . .⟩ then becomes inaccessible, and all further data will 
point to the single remaining possibility. This consistency—this 
agreement among the photons—looks like a collapse. Such 
considerations suggest a strong affinity between a copier and 
a measuring apparatus. Both impose their choice of preferred 
states. Only states that respect the “symmetry breaking” can 
be found out or copied. Other states are converted into super-
positions of redundant branches that collapse into a single 
option when probed by an initially ignorant observer.

Phrases like “Bob’s photon gets the message” or “Bob erases 
the message” suggest that a definite underlying pure state of 
Bob’s unobserved photon exists as soon as Alice makes her 
measurement. Such language is natural in that it provides a 
convenient picture that agrees with experimental results. How-
ever, the fact that an unknown quantum state cannot be discov-
ered by a measurement or revealed by cloning suggests that 
not only is it unknown, but it does not even exist in the usual 
sense. Indeed, the nature of a quantum state is still the subject 
of lively debate, and the restriction on copying expressed by 
the no-cloning theorem is an important part of the discussion.

Further Reading
▶ ​�V. Bužek, M. Hillery, “Quantum copying: Beyond the no-cloning 

theorem,” Phys. Rev. A 54, 1844 (1996).
▶ ​�V. Scarani, S. Iblisdir, N. Gisin, A. Acín, “Quantum cloning,” 

Rev. Mod. Phys. 77, 1225 (2005).
▶ ​�N. J. Cerf, J. Fiurášek, “Optical quantum cloning,” in Progress in 

Optics, vol. 49, E. Wolf, ed., Elsevier (2006), p. 455. � PT

a

b

c

THERE IS NO PERFECT QUANTUM COPIER. Imagine a device that 
could clone an arbitrary quantum state. (a) A vertically polarized 
photon would yield two vertically polarized photons, both of which 
make the “vertical” choice at a polarizing beamsplitter. (b) A 
horizontally polarized photon would yield two horizontally polarized 
photons, both of which make the “horizontal” choice. (c) Because 
quantum mechanics is linear, a diagonal polarization—a superposition 
of vertical and horizontal—can produce only the measurement 
outcomes represented in panels a and b; it could not produce the 
outcome shown. But such an outcome would be possible if the 
diagonal polarization were cloned correctly. The linearity of quantum 
mechanics thus prohibits the cloning of arbitrary states.
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