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FROM QUANTUM CHEATING
TO QUANTUM SECURITY

Daniel Gottesman and Hoi-Kwong Lo

For thousands of years, code-makers and code-breakers have
been competing for supremacy. Their arsenals may soon
include a powerful new weapon: quantum mechanics.

C ryptography —the art of code-making—has a long his-
tory of military and diplomatic applications, dating

back to the Babylonians. In World War II, the Allies” feat of
breaking the legendary German code Enigma contributed
greatly to their final victory. Nowadays, cryptography is be-
coming increasingly important in commercial applications
for electronic business. Sensitive data such as credit card
numbers and personal identification numbers (PINs) are
routinely transmitted in encrypted form. Quantum mechan-
ics is a new tool for both code-breakers and code-makers in
their eternal arms race. It has the potential to revolutionize
cryptography both by creating perfectly secure codes and by
breaking standard encryption schemes.

The best-known application of cryptography is secure com-
munication,! illustrated in figure 1. Suppose Alice would
like to send a message to Bob, but there is an eavesdropper,
Eve, who is wiretapping the channel. To prevent Eve from
knowing the message, Alice may perform encryption—that
is, transform the message to something that is unintelligible
to Eve—during the communication. On receiving the mes-
sage, Bob inverts the transformation and recovers the
message.

Bob’s advantage over Eve lies in his knowledge of a secret,
commonly called the key, that he shares with Alice. The key
tells him how to decode the message. Consider this example
(in the style of Cold War espionage thrillers):

The rumble of Soviet tanks shook the Prague hotel
room (number 117) as secret agent John Blond fin-

ished decoding his orders from his superior, N. He tore
the used page from the codebook and immediately
burned it with his lighter.

Blond is using a perfectly unbreakable cipher, a “one-time
pad.” The secret codebook allows N and Blond to share a long
secret binary string —the key —before Blond leaves on his mis-
sion. Whenever N would like to send a message to Blond, she
first converts it to binary. She then takes the exclusive-OR
(XOR) between each bit of the message and the corresponding
key bit to generate the encrypted message, which is transmit-
ted over a public channel. An enemy can intercept the en-
crypted message, but without the key, it is incomprehensible
gibberish, offering no clue to the contents of the original mes-
sage. On the other hand, Blond, by looking up the key in the
codebook, can recover the original message by taking the XOR
between the encrypted message and the key. Blond immedi-
ately burns the used page of the codebook to prevent it from
falling into enemy hands in the future.

Key distribution problem

John Blond finally snapped shut the codebook and
sighed. He had been on duty in Czechoslovakia for
so long that his codebook was getting thin. He knew
his days in Prague would soon be over: N would have
to recall him before he used up his whole codebook.
Blond recalled master cryptographer R's remonstration:
“This is no joking matter, double-one seven. Never
reuse the one-time pad.”
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FIGURE 1. COMMUNICATION security.
(a) Alice sends a message to Bob
through a communication channel, but
an eavesdropper, Eve, is wiretapping.
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(b) A message is encrypted by Alice
using an encryption key. The encrypted
message, the ciphertext, is now
unintelligible to Eve. Bob, who has the
same key as Alice, can decrypt the
ciphertext and recover the original
message. (The code used in this figure
is not very secure. Try breaking it
yourself; the solution is at the end of
the article.)

R was serious for a good reason.
The reuse of keys by the Soviet Union
(due to the manufacturer’s accidental
duplication of one-time pad pages)
enabled US cryptanalysts to unmask
the atomic spy Klaus Fuchs in 1949.2
When the key for a one-time pad is
used more than once, enemy cryptan-
alysts have the opportunity to look
for patterns in the encrypted mes-
sages that might reveal the key. Nev-
ertheless, excellent cryptosystems
(known as symmetric cryptosystems)
that reuse the key have been devel-
oped. The longer the key, the more
secure the system. For instance, a widely used system is the
Data Encryption Standard (DES), which has a key length of 56
bits. No method substantially more efficient than trying all 2%
values of the key is known for breaking DES. It is still conceiv-
able, however, that some yet unknown clever algorithm could
defeat DES and its cousins.

For top-secret applications, therefore, the one-time pad is
preferable. Blond’s predicament illustrates the drawback of the
one-time pad: When the secret key is used up, the code cannot
be used until the sender and receiver get together to share a
new secret key. Sending a courier with a new codebook into
the Prague Spring is a dangerous and unreliable business.
Even if the courier arrives, Blond and N can never be sure that
the codebook was not copied during its journey.

This issue is known as the “key distribution problem.” A
possible solution is public key cryptography. Instead of a sin-
gle long key shared between the sender and receiver, public
key cryptography uses two sorts of keys: one public key, which
is known to the world, and one private key, known only to the
receiver. Anyone with the public key can send secret messages,
but only someone who knows the private key can read them.
The important defining feature of public key cryptography is
that, even knowing the encryption key, there is no known com-
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putationally efficient way of working out what the decryption
key really is. As an example, the security of the best-known
public key cryptosystem, RSA, relies on the difficulty of fac-
toring large integers (see figure 2).

Public key cryptography can be used for another impor-
tant task: digital signatures. A digital signature exchanges the
role of the keys used in public key cryptography: The private
key is used to generate a signature and the public key is used
to verify it. Only someone with the private key could have
created the signature.

Quantum code-breaking

Both DES and RSA rely on an unproven assumption: There is
no fast algorithm to determine the secret key. For instance, RSA
is believed to be secure because mathematicians throughout
the world have worked very hard to break it, steadily produc-
ing modestimprovements in factoring algorithms, but without
groundbreaking success. With only modest increases in key
size, users of RSA can easily keep ahead even of the exponen-
tial growth in computing power over the years.

Quantum mechanics changed this. In 1994, Peter Shor of
AT&T Laboratories invented a quantum algorithm for effi-
cient factoring of large numbers.® The state of a quantum



FIGURE 2. THE RSA PUBLIC KEY
cryptosystem. The best-known public
key system is called RSA, after its
inventors Ronald Rivest, Adi Shamir, and
Leonard Adleman. It is based on modular
arithmetic over a large base N that is the
product of two large primes p and g. If x
is relatively prime to N, the Euler-Fermat
theorem tells us that x"= 1 mod N, where
r=(p—1)(g—1).The public key is a pair Two large primes
of numbers (N, e), and the private key is P q

d, with ed=1 mod r (thatis, ed = kr + 1
for some integer k). To encrypt a
message m, the sender (Alice) computes
y=m*®mod N.To decrypt the message y,
the receiver (Bob) computes y? mod

N =m mod N = m. For this step, Bob has
to know the private key d. Anyone can
send Bob an encrypted message, but
only Bob can decrypt it.

O=yarz

Private key d

computer is a superposition of exponentially many basis
states, each of which corresponds to a state of a classical com-
puter of the same size. By taking advantage of interference
and entanglement in this system, a quantum computer can
perform in a reasonable time some tasks that would take ri-
diculously long on a classical computer. Shor’s discovery
propelled the then-obscure subject of quantum computing
into a dynamic and rapidly developing field, and stimulated
scores of experiments and proposals aimed toward building
quantum computers.

Another remarkable discovery was made by Lov Grover
of Bell Laboratories, Lucent Technologies, who in 1996 in-
vented a quantum searching algorithm* (see Prysics Topay,
October 1997, page 19). To find one particular item among
N objects requires checking O(N) items classically. With
Grover’s algorithm, a quantum computer need only look
up items O(VN) times. It can be used to radically speed up
the exhaustive key search of DES (that is, trying all 2%
possibilities).

If a quantum computer is ever constructed in the future,
much of conventional cryptography will fall apart! To provide
the same security, the key lengths of symmetric schemes like
DES would have to be doubled due to Grover’s algorithm. The
most commonly used public key schemes are RSA and others
based on discrete logarithms or elliptic curves; Shor’s algo-
rithm breaks all of them. Even if it is decades until a sufficiently
large quantum computer can be built, this is a matter of current
concern: Some data, such as nuclear weapons designs, will still
need to remain secret, and it is important that today’s secret
messages cannot be decoded tomorrow.

Quantum code-making

Even if DES and RSA do fall apart, the one-time pad remains
a perfectly unbreakable cipher even against a quantum com-
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puter. However, as previously discussed, it has a serious
catch: the key distribution problem. It presupposes that Alice
and Bob share a key that is secret and as long as the message.
There is no way to guarantee that in practice. Trusted couriers
can be bribed or even intercepted without their knowledge.
More generally, classical signals are distinguishable. An
eavesdropper can reliably read the signals without changing
them. Therefore, in classical physics there is nothing, in prin-
ciple, to prevent an eavesdropper from wiretapping the key
distribution channel passively.

Fortunately, quantum mechanics helps to make codes as
well as break them.’ (See also Charles Bennett’s article,
“Quantum information and computation,” Puysics Topay,
October 1995, page 24.) The Heisenberg uncertainty princi-
ple dictates that it is fundamentally impossible to know the
exact values of complementary variables such as a particle’s
momentum and its position. This apparent limitation im-
posed by quantum mechanics can be a powerful tool in catch-
ing eavesdroppers. The central idea is to use nonorthogo-
nal quantum states to encode information. More concretely,
the essence of quantum cryptography can be understood in
a single question: Given a single photon in one of four pos-
sible polarizations (<, , &, or %), can one determine its
polarization with certainty? Surprisingly, the answer is no.
The rectilinear basis (¢ and T) and the diagonal basis (v* and
~) are incompatible, so the Heisenberg uncertainty principle
forbids us from simultaneously measuring both. More gen-
erally, experiments distinguishing nonorthogonal states, even
if only partially reliable, will disturb the states.

The key distribution problem can be partially solved by
quantum mechanics using the idea of quantum key distribu-
tion (QKD). The first and best-known protocol, usually called
“BB84” because it was published in 1984 by Charles Bennett
and Gilles Brassard,® is described in the box on page 51. In a
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FIGURE 3. EXPERIMENTAL QUANTUM KEY DISTRIBUTION. (a) Schematic of the experiment at Los Alamos® that implements the protocol
known as B92 (see the box on page 51) over 48 km of optical fiber. A laser with a wavelength of 1.3 pm, attenuated to approximate a single-
photon source, is the source of the key bits. Its output is passed through Alice’s interferometer. The two nonorthogonal quantum states used
in the B92 protocol are realized as two possible settings for the phase delay ¢, in one branch of the interferometer. To measure the state, Bob
passes the photon through his interferometer, adding one of two possible phase shifts ¢,, and detects the photon in one of the two bit
detectors. A bright pulse from a second laser tells Bob when to expect a photon from Alice. Air gaps in both interferometers allow Alice and
Bob to tweak the optical path lengths to keep properly synchronized. (b) The actual setup of the experiment. The two boxes in the foreground
are the interferometers, connected to each other only through 48 km of optical fiber. (Figure courtesy of Richard Hughes.)

prototypical QKD protocol, Alice sends some nonorthogonal
quantum states to Bob, who makes some measurements.
Then, by talking on the phone (which need not be secure),
they decide if Eve has tampered with the quantum states. If
not, they have a shared key that is guaranteed to be secret.
Note that Alice and Bob must share some authentication in-
formation to begin with; otherwise, Bob has no way to know
that the person on the phone is really Alice, and not a clever
mimic. The key generated by QKD can subsequently be used
for both encryption and authentication, thus achieving two
major goals in cryptography.

Experimental QKD

QKD is an active experimental subject. The first working pro-
totype, constructed in 1989 at IBM in Yorktown Heights,
New York, transmitted quantum signals over 32 cm of open
air.” Since then, various groups—including those led by
Paul Townsend at the British Telecommunications Photonics
Technology Research Centre (now part of Corning), Jim
Franson of Johns Hopkins University, Nicolas Gisin and
Hugo Zbinden of the University of Geneva, and Richard
Hughes of Los Alamos National Laboratory —have made
important contributions. A primary focus has been a series of
impressive experiments over commercial optical fibers. The
world record distance for QKD,® at the time of writing, is
about 50 km. One of the long-distance experiments, per-
formed at Los Alamos, is depicted in figure 3.

Most experiments to date have used variants of either the
BB84 or B92 schemes (see the box), although recently three
groups—one led by Paul Kwiat of Los Alamos, Gisin and
Zbinden’s group at Geneva, and a collaboration led by
Anton Zeilinger of the University of Vienna and Harald
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Weinfurter of the University of Munich—have independently
implemented protocols based on entangled pairs of parti-
cles, also known as Einstein-Podolsky-Rosen or EPR states.
In the BB84 and B92 schemes, typically a single-photon
source is simulated using attenuated coherent states—on
average, only a fraction of a photon is actually sent. With
additional losses in the fiber, very few arriving laser pulses
actually contain a photon. This low yield does not interfere
much with key distribution, however, since only the pho-
tons that reach Bob are used in the protocol. The key is
generally encoded in either the polarization or the phase of
the photon. Error rates in the photons actually received are
usually a few percent.

For commercial applications in, say, a local area network
environment, it is useful for a quantum cryptographic system
to be integrated into a passive multiuser optical fiber network
and its equipment to be miniaturized. Townsend’s group has
done much work in this area.’ For point-to-point applications,
the Geneva group has devised a so-called “plug and play”
system that automatically compensates for polarization
fluctuations.”® Such systems might someday convey secret
information between government agencies around Wash-
ington, DC, or connect bank branches within a city.

QKD has also been performed in open air,"' during day-
light, with a current range of about 1.6 km. Ambitious
schemes to perform a ground-to-satellite QKD experiment
have been proposed. If successful, quantum cryptography
may be used to ensure the security of command control of
satellites from control centers on the ground.

Future experiments will aim to make QKD more reli-
able, to integrate it with today’s communications infrastruc-
ture, and to increase the distance and rate of key generation.



Another ambitious goal is to produce a quantum repeater
using techniques of quantum error correction. Such an accom-
plishment will require substantial technical breakthroughs,
but would allow key distribution over arbitrarily long
distances.

Is QKD secure?

While experiments in QKD forged ahead, the theory devel-
oped more slowly. A clever Eve can adopt many possible strat-
egies to fool Alice and Bob, including subtle quantum attacks
entangling all of the particles sent by Alice. Taking all possibil-
ities into account, as well as the effects of realistic imperfections
in Alice and Bob’s apparatus and channel, has been difficult.
A long series of partial results has appeared over the years,
addressing restricted sets of strategies by Eve,'> but only in the
past few years have complete proofs appeared.

One class of proofs, by Dominic Mayers' and subsequently
by others, including Eli Biham and collaborators and Michael
Ben-Or,' attacks the problem directly and proves that the
standard BB84 protocol is secure. Another approach, by one
of us (HKL) and H. F. Chau,'® proves the security of a new
QKD protocol that uses quantum error-correcting codes.?
(For more on quantum error correction, see John Preskill,
“Battling decoherence: The fault-tolerant quantum com-
puter,” Prysics Topay, June 1999, page 24.) This approach
allows one to apply classical probability theory to tackle a
quantum problem directly. It works because the relevant
observables all commute with each other. While conceptually
simpler, this protocol requires a quantum computer to im-
plement. The two approaches have been unified by Peter
Shor and John Preskill,’* who showed that a quantum error-
correcting protocol could be modified to become BB84 with-
out compromising its security.

The proof of the security of QKD is a fine theoretical result,
but it does not mean that a real QKD system would be se-
cure.”” Some known and unknown security loopholes might
prove to be fatal. Apparently minor quirks of a system can

The BB84 protocol

n the best-known quantum key distribution (QKD) scheme,
BB84, Alice sends Bob a sequence of photons, each inde-
pendently prepared in one of four polarizations (<, {, 7, or \).
For each photon, Bob randomly picks one of the two (recti-
linear and diagonal) bases to perform a measurement. He
keeps the measurement outcome secret. Now Alice and Bob
publicly compare their bases. They keep only the polariza-
tion data for which they measured in the same basis. In the
absence of errors and eavesdropping by Eve, these data
should agree.
To test for tampering, they now choose a random subset
of the remaining polarization data, which they publicly an-
nounce. From there they can compute the error rate (that is,
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FIGURE 4. THE CHURCH OF THE LARGER HILBERT SPACE. In
cryptography—and other areas—the quantum mechanical
description of explicitly quantum aspects (such as single-photon
polarizations) can be expanded to include other parts as well,
including measurements and random number generation. This
alternative treatment consists of three steps. First, the original
quantum system—which might consist of two-level quantum bits
(called “qubits”), for example—is augmented with an additional
system. In this expanded Hilbert space, all operations are unitary
and can be combined into a single quantum mechanical step (here
denoted by “U”). Part of the output of the transformation is thrown
away, leaving only the final quantum system of interest. Using
quantum mechanics to simulate classical computations and
working with pure quantum states allows the most generalized
treatment of a problem and simplifies the task of determining
whether a given protocol is secure. Describing a protocol in the
Church of the Larger Hilbert Space does not change the protocol in
any way; it merely provides a new and sometimes simpler way of
looking at the system.

sometimes provide a lever for an eavesdropper to break the
encryption. For instance, instead of producing a single pho-
ton, a laser may produce two; Eve can keep one and give
the other to Bob. She can then learn what polarization Alice
sent without revealing her presence. There are various pos-
sible solutions to this particular problem; it is the unantici-
pated flaws that present the greatest security hazard. Ulti-
mately, we cannot have confidence that a real-life quantum

the fraction of data for which their values disagree). If the
error rate is unreasonably high—above, say, 10%—they
throw away all the data (and perhaps try again later). If the
error rate is acceptably small, they perform error correction
and also “privacy amplification” to distill a shorter string that
will act as the secret key. These steps essentially ensure that
their keys agree, are random, and are unknown to Eve.
Other QKD schemes have also been proposed. For exam-
ple, Artur Ekert of the University of Oxford suggested one
based on quantum mechanically correlated (that is, entan-
gled) photons, using Bell inequalities as a check of security.
In 1992, Charles Bennett of IBM proposed a simple QKD
scheme, called B92, that uses only two nonorthogonal states.
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cryptographic system is secure until it has withstood attacks
from determined real-life adversaries. Traditionally, breaking
cryptographic protocols has been considered to be as impor-
tant as making them—the protocols that survive are more
likely to be truly secure. The same standard will have to be
applied to QKD.

Post-Cold War applications

There are many problems beyond secure communication that
can be addressed by cryptography.

Alice and Bob are considering going on a date, but nei-
ther is willing to admit their interest unless the other is
also interested. How can they decide whether or not to
date without letting slip any unnecessary information?

This dating problem can be phrased as the problem of
computing a function f(a, b) = ab, where a and b are single bits
held respectively by Alice and Bob (0 = not interested, 1 = in-
terested). Problems like this can be solved classically using
variants of public key cryptography, which we know might
be rendered insecure by quantum computers. By exchanging
quantum states, can Alice and Bob solve the above dating
problem with absolute security?

There are many possible functions f that two people
might wish to compute together, too many to consider each
of them individually. Instead, cryptographers rely on a suite
of primitive operations that can be combined to build more
complex functions. One important protocol is called bit
commitment, and it is the electronic equivalent of a locked
box. Alice chooses a bit, 0 or 1, and writes it on a piece of
paper, which she deposits in the box. She gives the box to
Bob but keeps the key. She cannot change what she wrote,
and without the key, Bob cannot open the box. But at some
later point, Alice can give Bob the key and reveal her bit. By
itself, bit commitment is useful mostly for debunking pro-
fessional psychics, but it serves as a useful building block
for more interesting functions.

Consider the following bit commitment scheme® pro-
posed by Bennett and Brassard: If Alice wishes to commit
to a 0, she sends Bob a polarized photon in the rectilinear
basis; if she wishes to commit to a 1, she sends Bob a polar-
ized photon in the diagonal basis. In either case, Alice flips
a coin to decide which of the two polarizations to send. Bob
has no way to tell which basis Alice used; no matter which
bases Alice and he choose, Bob would measure a random
value. But when Alice unveils her bit, telling Bob which of
the four states she sent, Bob can measure in the appropriate
basis to verify that Alice is telling the truth. If she lies about
which basis she used, Bob has a 50% chance of finding out.
If the protocol is repeated many times, Alice’s chance of
successfully cheating is abysmally small.

This protocol is secure against a classical cheater, who
does not have much ability to store and manipulate quan-
tum states. But as Bennett and Brassard recognized, a quan-

52 PHYSICS TODAY | JANUARY 2025

tum cheater can break the protocol. Suppose that instead of
picking a specific state and sending it to Bob, Alice creates
an entangled pair of photons, (|©%) - |to))A2 (an EPR pair),
and sends the second photon to Bob, keeping the first one.
She stores the quantum state of the first photon and delays
measuring it. Suppose that when the time comes for Alice
to open the commitment, she decides she would like the
committed bit to read 0, which requires her to specify a state
in the rectilinear basis. Because of the entanglement, Alice
knows that if she and Bob measure in the same basis, they
will get opposite results. Therefore, she can measure her
photon in the rectilinear basis and tell Bob he has the oppo-
site polarization, and she will always be right.

If Alice instead wishes the committed bit to read 1, she needs
astate in the diagonal basis. But (jo3) — [To))AR2 = (|2%) - [s2)AR.
So Alice can measure her particle in the diagonal basis and
again be sure that Bob’s measurement outcome will be op-
posite to hers. Quantum cheating allows Alice to change
her mind at the last minute without being caught by Bob,
thus totally defeating the purpose of bit commitment.

Nonetheless, more sophisticated schemes for quantum
bit commitment were proposed, and for a long time were
believed to be secure. Eventually, the bubble burst and it
was shown that the above quantum cheating strategy,
which uses EPR nonlocality and delayed measurements,
can be generalized to break all two-party quantum bit com-
mitment schemes.' If Alice and Bob hold one of two pure
quantum states that are indistinguishable to Bob, then
Alice, acting unilaterally, can change one to the other.
Therefore, the two basic requirements of bit commitment—
that Bob does not know the bit and that Alice cannot
change it—are fundamentally incompatible with quantum
mechanics.

The strength of the proof lies in its generality. The idea is
to treat the whole system as if it were quantum mechanical,
extending the part that was originally quantum to include
any dice, measuring devices, and classical computations that
appear in the protocol. From this point of view, the original
protocol is equivalent to a purely quantum one, with some
of the output being thrown in the trash (see figure 4). Note
that throwing something away can never help a cheater, so
we might as well assume that the state shared by Alice and
Bob is the pure quantum state that is completely determined
by the protocol. That assumption substantially reduces the
complexity of the problem. It is not difficult to show that
when Alice and Bob hold a pure state, quantum bit commit-
ment is impossible.

Following the fall of quantum bit commitment, other im-
portant basic quantum cryptographic protocols have also
been proven to be insecure by one of us (HKL), thus leaving
the field in a shambles. What is left?

Some potential applications in cryptography are too sim-
ilar to bit commitment and cannot be done at all quantum
mechanically. Others have more modest goals and can be
solved by quantum protocols. For instance, Lior Goldenberg,



Lev Vaidman, and Stephen Wiesner of Tel Aviv University
have proposed a method of “quantum gambling,” in which
a cheater must pay a large fine if caught. The majority lie in
a middle ground—we do not know whether they can be
solved. The dating problem is an example. Many approaches
to it tread too near bit commitment and are doomed to fail-
ure, but it’s possible there are others, as yet undiscovered,
that do not.

Physics today, cryptology tomorrow
Quantum computers are still on the drawing boards, and
quantum cryptographic systems are only prototypes. Still,
there are a number of reasons for thinking about quantum
cryptology today. Unlike other cryptosystems, the security of
QKD is based on fundamental principles of quantum me-
chanics, rather than unproven computational assumptions.
QKD eliminates the great threat of unanticipated advances
in algorithms and hardware breaking a widely used crypto-
system. Small-scale QKD systems are well within the capa-
bilities of today’s technology, and commercial systems could
be available within a few years (although whether such sys-
tems are widely adopted depends on many nonacademic
factors, including cost).

Furthermore, grappling with the problems posed by
quantum protocols can give us insight into more general
questions about quantum mechanical systems in many fields
of physics. For instance, one reason it is hard to analyze
protocols and attacks is that they frequently involve a com-
bination of quantum and classical behaviors. In considering
bit commitment, though, it was possible to replace classical
parts of the protocol with a quantum description, an ap-
proach that is useful for many problems inside and outside
the field of quantum cryptography. This fully quantum
treatment is sometimes called the Church of the Larger
Hilbert Space, following John Smolin of IBM. All quantum
operations, including measurements, are unitary when con-
sidered as acting on a larger Hilbert space (figure 4).

Finally, quantum mechanics changes the world of cryp-
tology, and it is important to know what the new terrain will
look like to decide on cryptographic standards that may last
for decades. In a world where quantum computers and
communication are commonplace, today’s most widespread
public key cryptosystems would no longer work; in the
worst case, perhaps no public key cryptosystem will work.
If so, symmetric cryptosystems and QKD would partially
fill the gap, allowing secure communication. Unfortunately,
digital signatures would fail as well, meaning important
communications would need to be notarized by a trusted
third party.

Of course, QKD and symmetric cryptosystems are not
useful in situations in which Alice and Bob have never met.
Solving this problem would probably require a quantum
cryptographic center, which could verify the identity of both
of them. The center would have to be known and trusted by
both Alice and Bob.

Problems beyond secret communication and digital signa-
tures are a mixed bag. Many, such as bit commitment and
perhaps the dating problem, would be impossible, whereas
others, such as quantum gambling, could be carried out with
complete security.

This is just one of a number of possible futures. Perhaps
some new or existing public key cryptosystems will survive
quantum computation, or perhaps new public key systems
will be developed that can only run on a quantum com-
puter. Perhaps quantum computers will always remain
difficult to build (we believe that this is unlikely), and pub-
lic key cryptography will remain widespread, despite its
potential flaws. Only time will tell who benefits more from
quantum cryptology: the code-makers or the code-breakers.

Decoding the message in figure 1

The code is a “Caesar’s cipher,” in which each letter is shifted
by a fixed number of places in the alphabet. In this case, the
shift is three places.
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