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C ryptography—the art of code-making—has a long his-
tory of military and diplomatic applications, dating 

back to the Babylonians. In World War II, the Allies’ feat of 
breaking the legendary German code Enigma contributed 
greatly to their final victory. Nowadays, cryptography is be-
coming increasingly important in commercial applications 
for electronic business. Sensitive data such as credit card 
numbers and personal identification numbers (PINs) are 
routinely transmitted in encrypted form. Quantum mechan-
ics is a new tool for both code-breakers and code-makers in 
their eternal arms race. It has the potential to revolutionize 
cryptography both by creating perfectly secure codes and by 
breaking standard encryption schemes.
The best-known application of cryptography is secure com-
munication,1 illustrated in figure 1. Suppose Alice would 
like to send a message to Bob, but there is an eavesdropper, 
Eve, who is wiretapping the channel. To prevent Eve from 
knowing the message, Alice may perform encryption—that 
is, transform the message to something that is unintelligible 
to Eve—during the communication. On receiving the mes-
sage, Bob inverts the transformation and recovers the 
message.

Bob’s advantage over Eve lies in his knowledge of a secret, 
commonly called the key, that he shares with Alice. The key 
tells him how to decode the message. Consider this example 
(in the style of Cold War espionage thrillers):

The rumble of Soviet tanks shook the Prague hotel 
room (number 117) as secret agent John Blond fin-

ished decoding his orders from his superior, N. He tore 
the used page from the codebook and immediately 
burned it with his lighter.

Blond is using a perfectly unbreakable cipher, a “one-time 
pad.” The secret codebook allows N and Blond to share a long 
secret binary string—the key—before Blond leaves on his mis-
sion. Whenever N would like to send a message to Blond, she 
first converts it to binary. She then takes the exclusive-OR 
(XOR) between each bit of the message and the corresponding 
key bit to generate the encrypted message, which is transmit-
ted over a public channel. An enemy can intercept the en-
crypted message, but without the key, it is incomprehensible 
gibberish, offering no clue to the contents of the original mes-
sage. On the other hand, Blond, by looking up the key in the 
codebook, can recover the original message by taking the XOR 
between the encrypted message and the key. Blond immedi-
ately burns the used page of the codebook to prevent it from 
falling into enemy hands in the future.

Key distribution problem
John Blond finally snapped shut the codebook and 
sighed. He had been on duty in Czechoslovakia for 
so long that his codebook was getting thin. He knew 
his days in Prague would soon be over: N would have 
to recall him before he used up his whole codebook. 
Blond recalled master cryptographer R’s remonstration: 
“This is no joking matter, double-one seven. Never 
reuse the one-time pad.”
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R was serious for a good reason. 
The reuse of keys by the Soviet Union 
(due to the manufacturer’s accidental 
duplication of one-time pad pages) 
enabled US cryptanalysts to unmask 
the atomic spy Klaus Fuchs in 1949.2 
When the key for a one-time pad is 
used more than once, enemy cryptan-
alysts have the opportunity to look 
for patterns in the encrypted mes-
sages that might reveal the key. Nev-
ertheless, excellent cryptosystems 
(known as symmetric cryptosystems) 
that reuse the key have been devel-
oped. The longer the key, the more 
secure the system. For instance, a widely used system is the 
Data Encryption Standard (DES), which has a key length of 56 
bits. No method substantially more efficient than trying all 256 
values of the key is known for breaking DES. It is still conceiv-
able, however, that some yet unknown clever algorithm could 
defeat DES and its cousins.

For top-secret applications, therefore, the one-time pad is 
preferable. Blond’s predicament illustrates the drawback of the 
one-time pad: When the secret key is used up, the code cannot 
be used until the sender and receiver get together to share a 
new secret key. Sending a courier with a new codebook into 
the Prague Spring is a dangerous and unreliable business. 
Even if the courier arrives, Blond and N can never be sure that 
the codebook was not copied during its journey.

This issue is known as the “key distribution problem.” A 
possible solution is public key cryptography. Instead of a sin-
gle long key shared between the sender and receiver, public 
key cryptography uses two sorts of keys: one public key, which 
is known to the world, and one private key, known only to the 
receiver. Anyone with the public key can send secret messages, 
but only someone who knows the private key can read them. 
The important defining feature of public key cryptography is 
that, even knowing the encryption key, there is no known com-

putationally efficient way of working out what the decryption 
key really is. As an example, the security of the best-known 
public key cryptosystem, RSA, relies on the difficulty of fac-
toring large integers (see figure 2).

Public key cryptography can be used for another impor- 
tant task: digital signatures. A digital signature exchanges the 
role of the keys used in public key cryptography: The private 
key is used to generate a signature and the public key is used 
to verify it. Only someone with the private key could have 
created the signature.

Quantum code-breaking
Both DES and RSA rely on an unproven assumption: There is 
no fast algorithm to determine the secret key. For instance, RSA 
is believed to be secure because mathematicians throughout 
the world have worked very hard to break it, steadily produc-
ing modest improvements in factoring algorithms, but without 
groundbreaking success. With only modest increases in key 
size, users of RSA can easily keep ahead even of the exponen-
tial growth in computing power over the years.

Quantum mechanics changed this. In 1994, Peter Shor of 
AT&T Laboratories invented a quantum algorithm for effi-
cient factoring of large numbers.3 The state of a quantum 
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aFIGURE 1. COMMUNICATION security. 
(a) Alice sends a message to Bob 
through a communication channel, but 
an eavesdropper, Eve, is wiretapping. 
(b) A message is encrypted by Alice 
using an encryption key. The encrypted 
message, the ciphertext, is now 
unintelligible to Eve. Bob, who has the 
same key as Alice, can decrypt the 
ciphertext and recover the original 
message. (The code used in this figure 
is not very secure. Try breaking it 
yourself; the solution is at the end of 
the article.)
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computer is a superposition of exponentially many basis 
states, each of which corresponds to a state of a classical com-
puter of the same size. By taking advantage of interference 
and entanglement in this system, a quantum computer can 
perform in a reasonable time some tasks that would take ri-
diculously long on a classical computer. Shor’s discovery 
propelled the then-obscure subject of quantum computing 
into a dynamic and rapidly developing field, and stimulated 
scores of experiments and proposals aimed toward building 
quantum computers.

Another remarkable discovery was made by Lov Grover 
of Bell Laboratories, Lucent Technologies, who in 1996 in-
vented a quantum searching algorithm4 (see Physics Today, 
October 1997, page 19). To find one particular item among 
N objects requires checking O(N) items classically. With 
Grover’s algorithm, a quantum computer need only look 
up items O(√N) times. It can be used to radically speed up 
the exhaustive key search of DES (that is, trying all 256 
possibilities).

If a quantum computer is ever constructed in the future, 
much of conventional cryptography will fall apart! To provide 
the same security, the key lengths of symmetric schemes like 
DES would have to be doubled due to Grover’s algorithm. The 
most commonly used public key schemes are RSA and others 
based on discrete logarithms or elliptic curves; Shor’s algo-
rithm breaks all of them. Even if it is decades until a sufficiently 
large quantum computer can be built, this is a matter of current 
concern: Some data, such as nuclear weapons designs, will still 
need to remain secret, and it is important that today’s secret 
messages cannot be decoded tomorrow.

Quantum code-making
Even if DES and RSA do fall apart, the one-time pad remains 
a perfectly unbreakable cipher even against a quantum com-

puter. However, as previously discussed, it has a serious 
catch: the key distribution problem. It presupposes that Alice 
and Bob share a key that is secret and as long as the message. 
There is no way to guarantee that in practice. Trusted couriers 
can be bribed or even intercepted without their knowledge. 
More generally, classical signals are distinguishable. An 
eavesdropper can reliably read the signals without changing 
them. Therefore, in classical physics there is nothing, in prin-
ciple, to prevent an eavesdropper from wiretapping the key 
distribution channel passively.

Fortunately, quantum mechanics helps to make codes as 
well as break them.5 (See also Charles Bennett’s article, 
“Quantum information and computation,” Physics Today, 
October 1995, page 24.) The Heisenberg uncertainty princi-
ple dictates that it is fundamentally impossible to know the 
exact values of complementary variables such as a particle’s 
momentum and its position. This apparent limitation im-
posed by quantum mechanics can be a powerful tool in catch-
ing eavesdroppers. The central idea is to use nonorthogo-
nal quantum states to encode information. More concretely, 
the essence of quantum cryptography can be understood in 
a single question: Given a single photon in one of four pos-
sible polarizations (↔, ↕, ⤡, or ⤢), can one determine its 
polarization with certainty? Surprisingly, the answer is no. 
The rectilinear basis (↔ and ↕) and the diagonal basis (⤡ and 
⤢) are incompatible, so the Heisenberg uncertainty principle 
forbids us from simultaneously measuring both. More gen-
erally, experiments distinguishing nonorthogonal states, even 
if only partially reliable, will disturb the states.

The key distribution problem can be partially solved by 
quantum mechanics using the idea of quantum key distribu-
tion (QKD). The first and best-known protocol, usually called 
“BB84” because it was published in 1984 by Charles Bennett 
and Gilles Brassard,6 is described in the box on page 51. In a 
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FIGURE 2. THE RSA PUBLIC KEY 
cryptosystem. The best-known public 
key system is called RSA, after its 
inventors Ronald Rivest, Adi Shamir, and 
Leonard Adleman. It is based on modular 
arithmetic over a large base N that is the 
product of two large primes p and q. If x 
is relatively prime to N, the Euler–Fermat 
theorem tells us that xr ≡ 1 mod N, where 
r = (p − 1)(q − 1). The public key is a pair 
of numbers (N, e), and the private key is 
d, with ed ≡ 1 mod r (that is, ed = kr + 1 
for some integer k). To encrypt a 
message m, the sender (Alice) computes 
y ≡ me mod N. To decrypt the message y, 
the receiver (Bob) computes yd mod 
N ≡ med mod N ≡ m. For this step, Bob has 
to know the private key d. Anyone can 
send Bob an encrypted message, but 
only Bob can decrypt it.
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prototypical QKD protocol, Alice sends some nonorthogonal 
quantum states to Bob, who makes some measurements. 
Then, by talking on the phone (which need not be secure), 
they decide if Eve has tampered with the quantum states. If 
not, they have a shared key that is guaranteed to be secret. 
Note that Alice and Bob must share some authentication in-
formation to begin with; otherwise, Bob has no way to know 
that the person on the phone is really Alice, and not a clever 
mimic. The key generated by QKD can subsequently be used 
for both encryption and authentication, thus achieving two 
major goals in cryptography.

Experimental QKD
QKD is an active experimental subject. The first working pro-
totype, constructed in 1989 at IBM in Yorktown Heights, 
New York, transmitted quantum signals over 32 cm of open 
air.7 Since then, various groups—including those led by 
Paul Townsend at the British Telecommunications Photonics 
Technology Research Centre (now part of Corning), Jim 
Franson of Johns Hopkins University, Nicolas Gisin and 
Hugo Zbinden of the University of Geneva, and Richard 
Hughes of Los Alamos National Laboratory—have made 
important contributions. A primary focus has been a series of 
impressive experiments over commercial optical fibers. The 
world record distance for QKD,8 at the time of writing, is 
about 50 km. One of the long-distance experiments, per-
formed at Los Alamos, is depicted in figure 3.

Most experiments to date have used variants of either the 
BB84 or B92 schemes (see the box), although recently three 
groups—one led by Paul Kwiat of Los Alamos, Gisin and 
Zbinden’s group at Geneva, and a collaboration led by 
Anton Zeilinger of the University of Vienna and Harald 

Weinfurter of the University of Munich—have independently 
implemented protocols based on entangled pairs of parti-
cles, also known as Einstein-Podolsky-Rosen or EPR states. 
In the BB84 and B92 schemes, typically a single-photon 
source is simulated using attenuated coherent states—on 
average, only a fraction of a photon is actually sent. With 
additional losses in the fiber, very few arriving laser pulses 
actually contain a photon. This low yield does not interfere 
much with key distribution, however, since only the pho-
tons that reach Bob are used in the protocol. The key is 
generally encoded in either the polarization or the phase of 
the photon. Error rates in the photons actually received are 
usually a few percent.

For commercial applications in, say, a local area network 
environment, it is useful for a quantum cryptographic system 
to be integrated into a passive multiuser optical fiber network 
and its equipment to be miniaturized. Townsend’s group has 
done much work in this area.9 For point-to-point applications, 
the Geneva group has devised a so-called “plug and play” 
system that automatically compensates for polarization 
fluctuations.10 Such systems might someday convey secret 
information between government agencies around Wash-
ington, DC, or connect bank branches within a city.

QKD has also been performed in open air,11 during day-
light, with a current range of about 1.6 km. Ambitious 
schemes to perform a ground-to-satellite QKD experiment 
have been proposed. If successful, quantum cryptography 
may be used to ensure the security of command control of 
satellites from control centers on the ground.

Future experiments will aim to make QKD more reli-
able, to integrate it with today’s communications infrastruc-
ture, and to increase the distance and rate of key generation. 
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FIGURE 3. EXPERIMENTAL QUANTUM KEY DISTRIBUTION. (a) Schematic of the experiment at Los Alamos8 that implements the protocol 
known as B92 (see the box on page 51) over 48 km of optical fiber. A laser with a wavelength of 1.3 μm, attenuated to approximate a single-
photon source, is the source of the key bits. Its output is passed through Alice’s interferometer. The two nonorthogonal quantum states used 
in the B92 protocol are realized as two possible settings for the phase delay ϕA in one branch of the interferometer. To measure the state, Bob 
passes the photon through his interferometer, adding one of two possible phase shifts ϕB, and detects the photon in one of the two bit 
detectors. A bright pulse from a second laser tells Bob when to expect a photon from Alice. Air gaps in both interferometers allow Alice and 
Bob to tweak the optical path lengths to keep properly synchronized. (b) The actual setup of the experiment. The two boxes in the foreground 
are the interferometers, connected to each other only through 48 km of optical fiber. (Figure courtesy of Richard Hughes.)
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Another ambitious goal is to produce a quantum repeater 
using techniques of quantum error correction. Such an accom-
plishment will require substantial technical breakthroughs, 
but would allow key distribution over arbitrarily long 
distances.

Is QKD secure?
While experiments in QKD forged ahead, the theory devel-
oped more slowly. A clever Eve can adopt many possible strat-
egies to fool Alice and Bob, including subtle quantum attacks 
entangling all of the particles sent by Alice. Taking all possibil-
ities into account, as well as the effects of realistic imperfections 
in Alice and Bob’s apparatus and channel, has been difficult. 
A long series of partial results has appeared over the years, 
addressing restricted sets of strategies by Eve,12 but only in the 
past few years have complete proofs appeared.

One class of proofs, by Dominic Mayers13 and subsequently 
by others, including Eli Biham and collaborators and Michael 
Ben-Or,14 attacks the problem directly and proves that the 
standard BB84 protocol is secure. Another approach, by one 
of us (HKL) and H. F. Chau,15 proves the security of a new 
QKD protocol that uses quantum error-correcting codes.5 
(For more on quantum error correction, see John Preskill, 
“Battling decoherence: The fault-tolerant quantum com-
puter,” Physics Today, June 1999, page 24.) This approach 
allows one to apply classical probability theory to tackle a 
quantum problem directly. It works because the relevant 
observables all commute with each other. While conceptually 
simpler, this protocol requires a quantum computer to im-
plement. The two approaches have been unified by Peter 
Shor and John Preskill,16 who showed that a quantum error- 
correcting protocol could be modified to become BB84 with-
out compromising its security.

The proof of the security of QKD is a fine theoretical result, 
but it does not mean that a real QKD system would be se-
cure.17 Some known and unknown security loopholes might 
prove to be fatal. Apparently minor quirks of a system can 

sometimes provide a lever for an eavesdropper to break the 
encryption. For instance, instead of producing a single pho-
ton, a laser may produce two; Eve can keep one and give 
the other to Bob. She can then learn what polarization Alice 
sent without revealing her presence. There are various pos-
sible solutions to this particular problem; it is the unantici-
pated flaws that present the greatest security hazard. Ulti-
mately, we cannot have confidence that a real-life quantum 
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FIGURE 4. THE CHURCH OF THE LARGER HILBERT SPACE. In 
cryptography—and other areas—the quantum mechanical 
description of explicitly quantum aspects (such as single-photon 
polarizations) can be expanded to include other parts as well, 
including measurements and random number generation. This 
alternative treatment consists of three steps. First, the original 
quantum system—which might consist of two-level quantum bits 
(called “qubits”), for example—is augmented with an additional 
system. In this expanded Hilbert space, all operations are unitary 
and can be combined into a single quantum mechanical step (here 
denoted by “U”). Part of the output of the transformation is thrown 
away, leaving only the final quantum system of interest. Using 
quantum mechanics to simulate classical computations and 
working with pure quantum states allows the most generalized 
treatment of a problem and simplifies the task of determining 
whether a given protocol is secure. Describing a protocol in the 
Church of the Larger Hilbert Space does not change the protocol in 
any way; it merely provides a new and sometimes simpler way of 
looking at the system.

The BB84 protocol
In the best-known quantum key distribution (QKD) scheme, 

BB84, Alice sends Bob a sequence of photons, each inde-
pendently prepared in one of four polarizations (↔, ↕, ⤢, or ⤡). 
For each photon, Bob randomly picks one of the two (recti-
linear and diagonal) bases to perform a measurement. He 
keeps the measurement outcome secret. Now Alice and Bob 
publicly compare their bases. They keep only the polariza-
tion data for which they measured in the same basis. In the 
absence of errors and eavesdropping by Eve, these data 
should agree.

To test for tampering, they now choose a random subset 
of the remaining polarization data, which they publicly an-
nounce. From there they can compute the error rate (that is, 

the fraction of data for which their values disagree). If the 
error rate is unreasonably high—above, say, 10%—they 
throw away all the data (and perhaps try again later). If the 
error rate is acceptably small, they perform error correction 
and also “privacy amplification” to distill a shorter string that 
will act as the secret key. These steps essentially ensure that 
their keys agree, are random, and are unknown to Eve.

Other QKD schemes have also been proposed. For exam-
ple, Artur Ekert of the University of Oxford suggested one 
based on quantum mechanically correlated (that is, entan-
gled) photons, using Bell inequalities as a check of security. 
In 1992, Charles Bennett of IBM proposed a simple QKD 
scheme, called B92, that uses only two nonorthogonal states.
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cryptographic system is secure until it has withstood attacks 
from determined real-life adversaries. Traditionally, breaking 
cryptographic protocols has been considered to be as impor- 
tant as making them—the protocols that survive are more 
likely to be truly secure. The same standard will have to be 
applied to QKD.

Post–Cold War applications
There are many problems beyond secure communication that 
can be addressed by cryptography.

Alice and Bob are considering going on a date, but nei-
ther is willing to admit their interest unless the other is 
also interested. How can they decide whether or not to 
date without letting slip any unnecessary information?

This dating problem can be phrased as the problem of 
computing a function f(a, b) = ab, where a and b are single bits 
held respectively by Alice and Bob (0 = not interested, 1 = in-
terested). Problems like this can be solved classically using 
variants of public key cryptography, which we know might 
be rendered insecure by quantum computers. By exchanging 
quantum states, can Alice and Bob solve the above dating 
problem with absolute security?

There are many possible functions f that two people 
might wish to compute together, too many to consider each 
of them individually. Instead, cryptographers rely on a suite 
of primitive operations that can be combined to build more 
complex functions. One important protocol is called bit 
commitment, and it is the electronic equivalent of a locked 
box. Alice chooses a bit, 0 or 1, and writes it on a piece of 
paper, which she deposits in the box. She gives the box to 
Bob but keeps the key. She cannot change what she wrote, 
and without the key, Bob cannot open the box. But at some 
later point, Alice can give Bob the key and reveal her bit. By 
itself, bit commitment is useful mostly for debunking pro-
fessional psychics, but it serves as a useful building block 
for more interesting functions.

Consider the following bit commitment scheme6 pro-
posed by Bennett and Brassard: If Alice wishes to commit 
to a 0, she sends Bob a polarized photon in the rectilinear 
basis; if she wishes to commit to a 1, she sends Bob a polar-
ized photon in the diagonal basis. In either case, Alice flips 
a coin to decide which of the two polarizations to send. Bob 
has no way to tell which basis Alice used; no matter which 
bases Alice and he choose, Bob would measure a random 
value. But when Alice unveils her bit, telling Bob which of 
the four states she sent, Bob can measure in the appropriate 
basis to verify that Alice is telling the truth. If she lies about 
which basis she used, Bob has a 50% chance of finding out. 
If the protocol is repeated many times, Alice’s chance of 
successfully cheating is abysmally small.

This protocol is secure against a classical cheater, who 
does not have much ability to store and manipulate quan-
tum states. But as Bennett and Brassard recognized, a quan-

tum cheater can break the protocol. Suppose that instead of 
picking a specific state and sending it to Bob, Alice creates 
an entangled pair of photons, (|↔↕⟩ − |↕↔⟩)/√2 (an EPR pair), 
and sends the second photon to Bob, keeping the first one. 
She stores the quantum state of the first photon and delays 
measuring it. Suppose that when the time comes for Alice 
to open the commitment, she decides she would like the 
committed bit to read 0, which requires her to specify a state 
in the rectilinear basis. Because of the entanglement, Alice 
knows that if she and Bob measure in the same basis, they 
will get opposite results. Therefore, she can measure her 
photon in the rectilinear basis and tell Bob he has the oppo-
site polarization, and she will always be right.

If Alice instead wishes the committed bit to read 1, she needs 
a state in the diagonal basis. But (|↔↕⟩ − |↕↔⟩)/√2 ≡ (|⤡⤢⟩ − |⤢⤡⟩)/√2. 
So Alice can measure her particle in the diagonal basis and 
again be sure that Bob’s measurement outcome will be op-
posite to hers. Quantum cheating allows Alice to change 
her mind at the last minute without being caught by Bob, 
thus totally defeating the purpose of bit commitment.

Nonetheless, more sophisticated schemes for quantum 
bit commitment were proposed, and for a long time were 
believed to be secure. Eventually, the bubble burst and it 
was shown that the above quantum cheating strategy, 
which uses EPR nonlocality and delayed measurements, 
can be generalized to break all two-party quantum bit com-
mitment schemes.18 If Alice and Bob hold one of two pure 
quantum states that are indistinguishable to Bob, then 
Alice, acting unilaterally, can change one to the other. 
Therefore, the two basic requirements of bit commitment—
that Bob does not know the bit and that Alice cannot 
change it—are fundamentally incompatible with quantum 
mechanics.

The strength of the proof lies in its generality. The idea is 
to treat the whole system as if it were quantum mechanical, 
extending the part that was originally quantum to include 
any dice, measuring devices, and classical computations that 
appear in the protocol. From this point of view, the original 
protocol is equivalent to a purely quantum one, with some 
of the output being thrown in the trash (see figure 4). Note 
that throwing something away can never help a cheater, so 
we might as well assume that the state shared by Alice and 
Bob is the pure quantum state that is completely determined 
by the protocol. That assumption substantially reduces the 
complexity of the problem. It is not difficult to show that 
when Alice and Bob hold a pure state, quantum bit commit-
ment is impossible.

Following the fall of quantum bit commitment, other im-
portant basic quantum cryptographic protocols have also 
been proven to be insecure by one of us (HKL), thus leaving 
the field in a shambles. What is left?

Some potential applications in cryptography are too sim-
ilar to bit commitment and cannot be done at all quantum 
mechanically. Others have more modest goals and can be 
solved by quantum protocols. For instance, Lior Goldenberg, 
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Lev Vaidman, and Stephen Wiesner of Tel Aviv University 
have proposed a method of “quantum gambling,” in which 
a cheater must pay a large fine if caught. The majority lie in 
a middle ground—we do not know whether they can be 
solved. The dating problem is an example. Many approaches 
to it tread too near bit commitment and are doomed to fail-
ure, but it’s possible there are others, as yet undiscovered, 
that do not.

Physics today, cryptology tomorrow
Quantum computers are still on the drawing boards, and 
quantum cryptographic systems are only prototypes. Still, 
there are a number of reasons for thinking about quantum 
cryptology today. Unlike other cryptosystems, the security of 
QKD is based on fundamental principles of quantum me-
chanics, rather than unproven computational assumptions. 
QKD eliminates the great threat of unanticipated advances 
in algorithms and hardware breaking a widely used crypto-
system. Small-scale QKD systems are well within the capa-
bilities of today’s technology, and commercial systems could 
be available within a few years (although whether such sys-
tems are widely adopted depends on many nonacademic 
factors, including cost).

Furthermore, grappling with the problems posed by 
quantum protocols can give us insight into more general 
questions about quantum mechanical systems in many fields 
of physics. For instance, one reason it is hard to analyze 
protocols and attacks is that they frequently involve a com-
bination of quantum and classical behaviors. In considering 
bit commitment, though, it was possible to replace classical 
parts of the protocol with a quantum description, an ap-
proach that is useful for many problems inside and outside 
the field of quantum cryptography. This fully quantum 
treatment is sometimes called the Church of the Larger 
Hilbert Space, following John Smolin of IBM. All quantum 
operations, including measurements, are unitary when con-
sidered as acting on a larger Hilbert space (figure 4).

Finally, quantum mechanics changes the world of cryp-
tology, and it is important to know what the new terrain will 
look like to decide on cryptographic standards that may last 
for decades. In a world where quantum computers and 
communication are commonplace, today’s most widespread 
public key cryptosystems would no longer work; in the 
worst case, perhaps no public key cryptosystem will work. 
If so, symmetric cryptosystems and QKD would partially 
fill the gap, allowing secure communication. Unfortunately, 
digital signatures would fail as well, meaning important 
communications would need to be notarized by a trusted 
third party.

Of course, QKD and symmetric cryptosystems are not 
useful in situations in which Alice and Bob have never met. 
Solving this problem would probably require a quantum 
cryptographic center, which could verify the identity of both 
of them. The center would have to be known and trusted by 
both Alice and Bob.

Problems beyond secret communication and digital signa-
tures are a mixed bag. Many, such as bit commitment and 
perhaps the dating problem, would be impossible, whereas 
others, such as quantum gambling, could be carried out with 
complete security.

This is just one of a number of possible futures. Perhaps 
some new or existing public key cryptosystems will survive 
quantum computation, or perhaps new public key systems 
will be developed that can only run on a quantum com-
puter. Perhaps quantum computers will always remain 
difficult to build (we believe that this is unlikely), and pub-
lic key cryptography will remain widespread, despite its 
potential flaws. Only time will tell who benefits more from 
quantum cryptology: the code-makers or the code-breakers.
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Decoding the message in figure 1
The code is a “Caesar’s cipher,” in which each letter is shifted 
by a fixed number of places in the alphabet. In this case, the 
shift is three places.


