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Quantum entanglement:
A modern perspective

It’s not your grandfather’s quantum mechanics. Today,
researchers treat entanglement as a physical resource:
Quantum information can now be measured, mixed,

distilled, concentrated, and diluted.

Barbara M. Terhal, Michael M. Wolf, and Andrew C. Doherty

“If two separated bodies, each by itself known maximally,
enter a situation in which they influence each other, and separate
again, then there occurs regularly that which I have [just] called

entanglement of our knowledge of the two bodies.”
—Erwin Schrodinger (translation by J. D. Trimmer)

E rwin Schrodinger coined the word entanglement in 1935
in a three-part paper' on the “present situation in quan-
tum mechanics.” His article was prompted by Albert Ein-
stein, Boris Podolsky, and Nathan Rosen’s now celebrated
EPR paper that had raised fundamental questions about
quantum mechanics earlier that year.

Einstein and his coauthors had recognized that quantum
theory allows very particular correlations to exist between
two physically distant parts of a quantum system; those cor-
relations make it possible to predict the result of a measure-
ment on one part of a system by looking at the distant part.
On that basis, the EPR paper argued that the distant pre-
dicted quantity should have a definite value even before being
measured if the theory were to claim completeness and re-
spect locality. However, because quantum mechanics disal-
lows such definite values prior to measuring, the EPR authors
concluded that, from a classical perspective, quantum theory
must be incomplete.

Schrédinger’s 1935 perspective comes closer to the mod-
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ern view: The wavefunction or state vector
gives us all the information that we can have
about a quantum system. About entangled
quantum states, he wrote, “The whole is in
a definite state, the parts taken individually
are not,”! which we now understand as the
essence of pure-state entanglement. In that
same 1935 article, Schrodinger also intro-
duced his famous cat as an extreme illustra-
tion of entanglement: A cat physically isolated in a box with
a decaying atom and vial of cyanide represents a quantum
state having macroscopic degrees of freedom. If the atom
were to decay and trigger the release of cyanide, the cat
would die. The quantum-mechanical description of the sys-
tem is a coherent superposition of one state in which the atom
is still excited and the cat alive, and another state in which
the atom has decayed and the cat is dead:

(e M)+ [, M),

The isolated cat-trigger-atom-cyanide system as a whole
is in a definite entangled state, even though the cat itself ex-
ists as a probabilistic mixture of being alive or dead.

For the three decades following the 1935 articles, the debate
about entanglement and the “EPR dilemma” —how to make
sense of the presumably nonlocal effect one particle’s measure-
ment has on another—was philosophical in nature, and for
many physicists it was nothing more than that. The 1964 pub-
lication? by John Bell (pictured in figure 1) changed that situ-
ation dramatically. Bell derived correlation inequalities that
can be violated in quantum mechanics but have to be satisfied
within every model that is local and complete—so-called local



hidden-variable models. Bell's work made it possible to test
whether local hidden-variable models can account for ob-

served physical phenomena. Early and ongoing recent exper-
iments® showing violations of such Bell inequalities have in-
validated local hidden-variable models and lend support to
the quantum-mechanical view of nature. In particular, an ob-
served violation of a Bell inequality demonstrates the presence
of entanglement in a quantum system.

In 1995, Peter Shor at AT&T Research discovered that, for
certain problems, computation with quantum states instead of
classical bits can result in tremendous savings in computation
time.* He found a polynomial-time quantum algorithm that
solves the problem of finding prime factors of a large integer.
To date, no classical polynomial-time algorithm for this prob-
lem exists.

Shor’s breakthrough generated an avalanche of interest in
quantum computation and quantum information theory. In
this context, a modern theory of entanglement has begun to
emerge: Researchers now treat entanglement not simply as a

Figure 1. John Bell in repose. His
seminal work clarified the difference
between correlations generated by
entanglement and correlations in local
hidden-variable models. Nowadays,
quantum information theorists exploit
this difference to create advantages that
communication protocols using
entanglement have over classical ones.

paradoxical feature of quantum me-
chanics, but as a physical resource for
quantum-information processing and
computation. A whole zoo of various
kinds of pure and mixed entangled
states may be prepared—well be-
yond the simple pure-state superpo-
sitions that Schrodinger envisioned.
And those mixed entangled states
may be measured, distilled, concentrated, diluted, and ma-
nipulated. A surprisingly rich picture of entanglement is now
taking shape.

Entanglement for the 21st century

The discovery of quantum teleportation by IBM researcher
Charles Bennett and five collaborators in 1993 marks the
starting point of the modern view. In quantum teleportation
(see the article by Charles Bennett in Prysics Tobay, October
1995, page 24), an experimentalist, Alice, wishes to send an
unknown state |s) = @|0) + |1) of a two-level quantum system
to another experimentalist, Bob, in a distant laboratory. The
two-level system could refer, for example, to the polarization
of a single photon, the electronic excitation of an effective
two-level atom, or the nuclear magnetic spin of a hydrogen
atom. Alice and Bob do not have the means of directly trans-
mitting the quantum system from one place to another (for
photons, this could be the case when using a high-loss optical
fiber), but let us imagine that they do share an entangled
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Figure 2. Classically correlated, or separable,
quantum states are generated when Alice (red) and
Bob (blue) locally prepare quantum states ¢; and ¢,
depending on the result i of a classical random
number generator. If the correlations in a bipartite
quantum state cannot be produced by such a
procedure, then the state is considered entangled.

state. Consider the case in which Alice and Bob each have
one spin of a shared singlet state of two spin-¥2 particles
[\W-) = 1/\/§(|T, 1)y = [, 1), also called an EPR pair. Alice can
transmit her spin |s) to Bob by performing a certain joint
measurement on her spin state |s) and her half of the EPR
pair. She tells Bob the result of her measurement and, de-
pending on her information, Bob rotates his half of the EPR
pair to obtain the state |s). The teleportation protocol demon-
strates that the resources of classical communication and the
sharing of prior EPR entanglement are sufficient to transmit
an unknown spin state [s). (For the experimental realization,
see Puysics Topay, February 1998, page 18.)

The spin-singlet EPR state that Alice and Bob share in
quantum teleportation is called a maximally entangled state.
Even though the two spins together constitute a definite pure
state, each spin state is maximally undetermined or mixed
when considered separately. In mathematical terms, Alice’s
local density matrix—obtained by tracing over Bob’s spin
degrees of freedom, Try(|W ~){W ~[) —has equal probability for
spin up and spin down. In keeping with Schrédinger’s un-
derstanding of entanglement, one measures the amount of
entanglement in a general pure state ¢ in terms of the lack of
information about its local parts. The von Neumann entropy
S(p) = -Tr(p logp) is used as a measure of that information. In
other words, the entropy of entanglement E of the pure state
¢ is equal to the von Neumann entropy of, say, Alice’s density
matrix p = Trglp){@l.

Mixed entanglement

In the quantum teleportation scenario, we imagined, unre-
alistically, that Alice and Bob shared an EPR pair free of
noise or decoherence. More generally, Alice and Bob have
quantum systems that interact directly or through another
mediating quantum system —like Rydberg atoms in a laser
cavity that interact via photons, or two ions in an ion trap
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that interact through phonon modes of the trap.” A related
example of interest in quantum computation is an array of
interconnected ion traps, each holding a small number of
ions that are coupled by traveling photons or by ions that
are moved between the traps.® The interaction, or “quantum
link,” between a pair of systems is subject to noise or deco-
herence through photon loss or heating of the phonons, for
instance. For simplicity, assume that Alice and Bob’s local
operations on the quantum systems —operations on the ions
in a single trap, say —are perfect, and their exchange of clas-
sical information is also perfectly noise free. That idealiza-
tion enables one to measure the strength of the quantum
link between the systems.

An essential question is, Given unavoidable noise levels,
is it possible to establish a strong quantum link —a set of pure
EPR pairs, in other words—between two systems? If it is, then
the noise is weak enough to permit the error-free exchange
of quantum information between the systems, since the tele-
portation through the generated EPR pairs will be error free.
That capability may come at a certain cost, determined by the
amount of noisy interaction required to generate an EPR pair.
If it is not possible to generate EPR pairs, that decoherence in
the system imposes a fundamental limitation on our ability
to perform quantum information processing.

The possibility of generating shared EPR entanglement in
noisy environments is not only of interest in entanglement the-
ory, but is crucial for the realization of long-distance quantum
communication” and possibly large-scale quantum computa-
tion. For example, it was recently shown® that fault-tolerant
quantum computation can be achieved in the presence of very
high noise levels in the interaction link—a link can have an
error rate of two-thirds—between quantum systems that are
“small” in a particular sense, if one assumes that local quan-
tum processing on each end is (almost) error free.

Pure quantum states have their entanglement quantified



fairly intuitively by considering the degree
of local “mixedness” or entropy. However,
mixtures of entangled and unentangled
states are murkier: Recognizing which mix-
tures are still entangled may be difficult. So,
just what physical systems can we call “en-
tangled”? An operational description—
expressing entanglement in terms of its
negation—is helpful. Suppose that Alice
and Bob, working in their distant labs, each
receive the same random number over the
phone. Depending on the random number,
each of them locally prepares a certain
quantum state. The physical state of their
whole system, expressed as a density ma-
trix, typically exhibits correlations between
the two systems. However, those correla-
tions would be classical, since they arise
from classical random numbers. A quantum
state that can be prepared in this way over
the phone is called “unentangled” or separa-
ble, and such a state can be mathematically
expressed as a mixture of unentangled pure
states (see figure 2). Conversely, a state is

EPR
pair (1)

EPR
pair (2)

Figure 3. Entanglement distillation—the conversion of many noisy less-entangled
states into fewer, more-entangled ones. Imagine two Einstein-Podolsky-Rosen pairs
that pick up noise when their parts are transmitted to Alice and Bob. Assume that
the noisy states are still entangled. Alice and Bob can use the following protocol to
increase the entanglement: (i) each of them applies a controlled-shift operation C to
the states sent to them; the shift operation acts on the upper green system (1) and
the lower green system (2). For i and j=0,1, C|i), ® |}), = |i), ® |i @ j),, where & means
addition modulo 2. (i) Each measures the lower EPR(2) pair in the {|0), |1)} basis and
they compare their results. If the outcomes are the same (checked over the phone),

“entangled” if it cannot be prepared over
the phone, but requires coherent interaction
between the two systems or the transmis-
sion of superpositions of quantum states.

Measures of noisy entanglement

For mixed states, it is harder to establish a good measure of
entanglement, since such a measure has to distinguish be-
tween entropy arising from classical correlations in the
state—a state of thermal equilibrium, for example—and local
entropy due to purely quantum correlations. Two measures
of entanglement that have explicit physical meaning in the
processing of quantum information have emerged from the
quantum-link notion just described: the entanglement cost
E(p) of a quantum state and the distillable entanglement D(p)
of a quantum state, first defined in reference 9.

Assume that Alice and Bob have created, using their
noisy link, many (1) shared copies of an entangled quan-
tum state p; we denote such a collection as p®". To distill
some EPR pairs from those copies, Alice and Bob perform
several rounds of local, error-free operations to their parts
of the copies and communicate their measurements (or
other classical data) to each other. Such a protocol is called
entanglement distillation; figure 3 illustrates one round of
such a scheme. The aim is to produce fewer states that are,
however, more entangled than the initial ones. Ideally, the
protocol produces nearly perfect maximally entangled EPR
pairs in the limit of a large number of input states p®" with
n — o, The distillable entanglement D(p) is then the number

the entanglement in the first EPR pair will have increased. The various ways of
iterating the procedure to distill more entangled states are known as recurrence
protocols® or entanglement pumping.®

of such EPR pairs that can be extracted per copy of p in this
asymptotic limit.

The reverse process also has physical meaning. What is
the smallest number k of EPR pairs that Alice and Bob ini-
tially need to create a set of n copies of p for n — o by local
error-free operations? This asymptotic ratio k/n is the second
measure of entanglement, the entanglement cost E(p).

Reversible and irreversible manipulation
Attentive readers may have noticed a quirk in our notation:
The formalism uses the same symbol E to denote both the
entanglement cost for general states and the entropy of en-
tanglement for pure states. The notation coincidence is
harmless since the creation cost of a pure state equals the
local entropy of entanglement E. Furthermore, for a pure
state @, it turns out that E(p) = D(¢) (see box 1 on page 44).
Physically, this means that the process of entanglement
dilution—converting EPR pairs into lesser entangled pure
states ¢p —can be reversed without loss of entanglement. The
reverse process is called entanglement concentration and it
produces D(¢)n = E(p)n EPR pairs from an initial supply of
n states @.

For mixed states, D is believed to be generically less
than E, which implies that the preparation of mixed states
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Box 1. The law of large numbers and
interconvertible entanglement

S uppose one generates a bit string of length k by k reali-
zations of a binary random variable that takes the value
1 with probability p and the value 0 with probability 1 —p.
By the law of large numbers, among the k-bit strings there
exist typical strings that have a high probability of
occurring—ones in which approximately pk + O(/k) bits are
1 and (1 — p)k bits are 0, for instance—and atypical strings,
the string of all zeros, for example. The key to understanding
the protocols of pure state entanglement concentration and
dilution® is this typicality of sequences.

Suppose Alice and Bob would like to convert some
shared entangled states ¢® with |@) = vp|11) + /T — p|00)
to a smaller supply of Einstein-Podolsky-Rosen (EPR) pairs
W-. In other words, suppose they wish to concentrate their
entanglement in fewer qubits. Alice and Bob will each do a
local measurement that counts the number of ones in a bit
string (but not which bits are ones). With high probability—
approaching 1 as k — co—they both have pk as their mea-
surement outcome, indicating that pk bits out of k are one.
With that outcome, Alice and Bob will have obtained a
quantum state whose local density matrix has eigenvalues
that are all equal which number approximately

k ~ DkHP)-0(K) — DkH(g)-O(WR)
pk

Here, H(p) is the Shannon entropy of the distribution
(p, 1 — p). Thus Alice and Bob can make a local change of
basis (a unitary rotation) and truncate the dimension of the
space to 2" and obtain n = kE(¢p) — O(/k) EPR pairs.

In the reverse process of dilution, one converts n EPR
pairs into k states ¢ by quantum teleporting an approxima-
tion ¢, to @®k from Alice to Bob using the EPR pairs. In the
local spectrum of the state ¢®, there exist typical eigen-
states, with approximately pk bits equal to 1 and (1 — p)k bits
equal to 0, and atypical eigenstates. The approximation ¢,
is obtained from ¢® by truncating the local spectrum to the
eigenstates that are in this typical subspace. The dimension
of this typical subspace is 2¥¢) 90 and therefore the state
@, can be teleported using n = kE(¢p) + O(vk) EPR pairs. In the
limit of large k, the conversion ratios k/n of the dilution and
concentration protocols will be the same and thus prove the
asymptotic reversibility of the processes.

from EPR pairs is a process involving an irreversible loss
of entanglement. Curiously, the D < E conjecture has only
been proven for some special classes of mixed states.'

In 1998, the Horodecki family of Gdansk, Poland (father
Ryszard and sons Pawet and Michat), identified a class of
entangled states that exhibit an extreme form of irreversibil-
ity. They proved that no entanglement can be distilled (D = 0)
from these “bound entangled states.”'" And for a large set of
states from that class, irreversibility was established by prov-
ing that entanglement is required to prepare the states E > 0.
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Consider the metaphor illustrated in figure 4. If EPR pairs
were nodes connected by lines or strands that represent
quantum correlations between particles, then one could think
of mixed entanglement as entanglement in which the strands
are simply mixed up. The mixing may make it hard to recon-
struct which particle of Alice is entangled with which particle
of Bob. Cutting a few strands reduces the clutter, but every
line cut represents an EPR pair lost (compare this process
with the distillation protocol in figure 3). Bound entangled
states are those mixtures that are so thoroughly mixed up that
every single line has to be cut to remove the noise or clutter
from the system. But, when every line is cut, no entanglement
remains to be distilled.

“Black holes” of quantum information

Because the modern theory of entanglement treats quantum
states as physical resources for processing information, one
might consider them hierarchically. A simple and ideal world
would have only two classes of quantum states: unentangled,
classically correlated states that are useless as a resource in
quantum teleportation and don't violate any Bell inequalities,
and entangled states whose distillation rate D measures their
usefulness in quantum teleportation. If the distillation rate D
is nonzero, one can distill from such states some EPR pairs,
known to violate Bell inequalities.

Bound entanglement tells us that life is not so simple.
Bound entangled states are costly (E > 0), but useless in var-
ious quantum-information-processing protocols like telepor-
tation. Furthermore, there is evidence that bound entangled
states do not violate any Bell inequalities.

In those two senses, bound entangled states are the
“black holes” of quantum information theory. Entangle-
ment goes in but is impossible to recover. And like black
holes in the theory of gravitation, bound entangled states
test the limits of our understanding and puzzle us by their
intrinsic irreversibility.

Bound entanglement and partial transposition
In what sense are bound states so thoroughly mixed up that
no entanglement at all can be extracted? Bound entangled
states behave intrinsically differently from every other entan-
gled state: They remain physical under the unphysical opera-
tion of partial transposition.

Researchers realized that they could characterize entan-
glement in terms of how states behave under certain un-
physical operations.'? In 1996, Asher Peres at the Technion—
Israel Institute of Technology in Haifa, Israel, noted that
matrix transposition is just such an unphysical operation
when applied to entangled states. Taking the transpose of
a system’s density matrix produces another density matrix—
a physically valid result. And taking the transpose of, say,
Bob’s part of an unentangled state 1, ® ¢, yields another
physically valid quantum state, since each part of the
quantum state can transform separately; i, is not changed,
and the density matrix of ¢y is transposed. But when ap-



plied to part of a pure entangled state, matrix transposi-
tion produces an unphysical result. (For details, see box 2
on page 46.)

Peres conjectured that partial transposition was the de-
fining criterion for entanglement. In other words, all entan-
gled states—pure or mixed —should map onto unphysical
states by partial matrix transposition, and all unentangled
states will remain physical under the same operation.

Remarkably, the truth of that conjecture depends on the
dimension of the underlying Hilbert spaces or phase spaces.
If one considers the state of two spin-V particles, the polar-
ization degrees of freedom of two laser beams, or two
modes of a light field having a Gaussian Wigner function,
then, indeed, all entangled states map onto unphysical
states by partial transposition. However, for two spin-one
(or higher-dimensional system) particles or a Gaussian light
field with at least two modes for both Alice and Bob, that is
no longer true in general; there exist entangled mixed states
that pass the “partial transpose” test and have therefore lost
an essential property of entanglement.

The loss of that property is precisely what the Horodecki
family showed would lead to a zero distillation rate D. En-
tangled states that pass the partial transpose test are the
bound entangled states in which the entanglement is for-
ever locked or “bound” inside.

Entanglement witnesses
Given that entanglement can be such a subtle property of
quantum states, just how can one distinguish between en-
tangled and unentangled states? A violation of a Bell in-
equality has been the traditional telltale sign of entangle-
ment in a quantum system. Examples of such experiments®
used pairs of entangled photons created from nonlinear
optical processes, especially parametric down-conversion;
the polarization degrees of freedom of the emitted photons
carried entanglement. Alice and Bob checked for a Bell in-
equality violation by using local analyzers to measure the
polarization of the photons along various angles.
Unfortunately, many quantum states, including the set of
bound entangled states, are not known to violate any Bell
inequality. And considering the existing limitations on exper-
imental control of quantum systems, experimentalists prefer
to check for entanglement using the fewest possible local
measurements. The theoretical framework of an entangle-
ment witness, of which a Bell inequality is a particular exam-
ple,"® addresses those two issues. The defining property of an
entanglement witness W is that its expectation value with
respect to any unentangled state p is always nonnegative,
Tr(Wp) > 0. At the same time, there exist entangled states o
for which Tr(Wo) < 0. Measuring W on a quantum state o and
finding a negative expectation value thus establishes the en-
tanglement of 0. The good news is that there is an entangle-
ment witness for every entangled state; given an experimen-
tal means, any entanglement, bound or otherwise, can be
detected. The bad news is that entanglement witnesses are

Bob’s
lab

Figure 4. Irreversibility in noisy entanglement. An entangled
EPR pair is represented by a single line or strand connecting two
nodes or particles, one each in Alice and Bob’s labs. The red
arrow signifies the creation of some mixed entanglement from
the single strands by local operations on the particles (and
classical communication, on the phone, say); the process is
abbreviated LOCC. One state p that has five particles for both
Alice and Bob is created. The entanglement cost is the number of
EPR pairs that is needed per single noisy state p, in this case 7
because Alice and Bob began with seven EPR pairs. But how does
one reverse the process and extract some single strands—EPR
pairs—from the noisy mixtures? The distillation rate D is the
number of EPR pairs that can be extracted per noisy state p. Bound
entangled mixtures are those that are so thoroughly mixed up that
there are no means to extract any single strands. In other words,
for a bound entangled state the blue arrow representing the
distillation rate D is zero.

nonlocal observables. Nevertheless, one can measure the ex-
pectation value of W by measuring the expectation value of
a number of local observables W,, such that W=} W,. Re-
search is under way to determine the minimal number of
local measurements for a given witness.'

Bell’s communication advantages

Given the framework of entanglement witnesses, what is
special about Bell inequalities? Although they can be consid-
ered a type of entanglement witness, Bell inequalities do not,
strictly speaking, test for entanglement but for a departure
from local hidden-variable theories. Interpreted as such, Bell
inequalities have taken on a whole new life in quantum-
communication science. Researchers consider remote parties
who have to carry out a certain task with minimal communi-
cation between them. One compares the amount of commu-
nication necessary if those parties are given shared random
bits (that can be viewed as local hidden variables) or an
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Box 2. Partial matrix transposition and
time reversal

Matrix transposition on density matrices is closely related to
the operation of time reversal—represented by an anti-
unitary operation—in quantum mechanics. The time-reversal
operation reverses the momenta, including angular momen-
ta and spin, of a quantum system. It is possible to represent
the operation by complex conjugation that maps the mo-
mentum operator p = —id/dx onto p = id/dx. Applied to Her-
mitian density matrices, complex conjugation is identical to
matrix transposition T: p— p"in a given basis. When applying
this operation on an entire density matrix p, one obtains an-
other valid density matrix p” = p* with nonnegative eigenval-
ues. But when the transposition operation is applied “par-
tially” to half of a joint system—the maximally entangled
state | @), = 1/+/2(|00) + |11)), for example—then one may no
longer end up with a valid quantum state. Indeed, transposi-
tion in the {|0), | 1)} basis on Bob's half of the state ®@,; (and the
identity operation /, on Alice’s half) gives (I, @ T)(|PXD|) =

100 1 1000
110 0 0 0| 1/0 0 1 O
1.®T)= == ,
(A®)20000 210 1 0 0
100 1 000 1

a matrix that has a negative eigenvalue, and is therefore
unphysical. The relevance of partial transposition for detect-
ing entanglement in a quantum state was first noted by
Asher Peres in 1996. He observed that any unentangled state
remains unentangled under partial transposition, because a
product state |p,) ® |pg) is mapped onto another product
state |p,) ® |@g*) by transposition of Bob's system.

entangled quantum state. Sharing entangled states leads to
savings in communication precisely because the correlations
in quantum states cannot always be adequately described by
local hidden-variable theories® (see the article by Andrew M.
Steane and Wim van Dam, in Prysics Topay, February 2000,

page 35).
What lies beyond

The efforts of the quantum information theorists over the
past eight years would come to little if the theory were not
supplemented by an ability to create and manipulate en-
tanglement in the lab. There is a rapidly growing list of
physical systems—optical and atomic systems especially —
in which it is possible to prepare various kinds of entangled
states. As discussed previously, the use of photonic degrees
of freedom, such as polarization or momentum, has been a
long-time favorite way to create entanglement.® Entangled
states consisting of the quadrature observables of different
modes of light have been prepared in optical parametric
oscillators and optical fibers.!® Entanglement in the states
of motion of the valence electrons® of trapped ions or of
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Rydberg atoms in cavity quantum electrodynamics has
involved up to four different atoms. Another promising
avenue is the recently observed entanglement of large en-
sembles of atoms."”

This short review showcases just a few striking facets of
the modern theory of entanglement. Most notably, entangle-
ment shared between more than two subsystems is outside
our scope here. The broader study of entanglement between
many subsystems may lead the field to better understand the
role of large-scale entanglement in quantum computation or
quantum many-body systems.

We have focused on the role of entanglement in the trans-
mission of quantum information. Entanglement also proves
useful, however, when the goal is to transmit classical infor-
mation as efficiently as possible. Researchers are studying
many measures of mixed entanglement beyond the two
most prominent measures discussed in this review. As for
bound entanglement, there is some evidence that it may
have a role to play as “helper” entanglement, useless by
itself, but useful when combined with other sources of en-
tanglement. For entanglement-theory overview articles that
highlight the field, see volume 1 of Quantum Information and
Computation (July 2001).
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