
“If two separated bodies, each by itself known maximally, 
enter a situation in which they influence each other, and separate 
again, then there occurs regularly that which I have [just] called 

entanglement of our knowledge of the two bodies.”
—Erwin Schrödinger (translation by J. D. Trimmer)

E rwin Schrödinger coined the word entanglement in 1935 
in a three-part paper1 on the “present situation in quan-

tum mechanics.” His article was prompted by Albert Ein-
stein, Boris Podolsky, and Nathan Rosen’s now celebrated 
EPR paper that had raised fundamental questions about 
quantum mechanics earlier that year.

Einstein and his coauthors had recognized that quantum 
theory allows very particular correlations to exist between 
two physically distant parts of a quantum system; those cor-
relations make it possible to predict the result of a measure-
ment on one part of a system by looking at the distant part. 
On that basis, the EPR paper argued that the distant pre-
dicted quantity should have a definite value even before being 
measured if the theory were to claim completeness and re-
spect locality. However, because quantum mechanics disal-
lows such definite values prior to measuring, the EPR authors 
concluded that, from a classical perspective, quantum theory 
must be incomplete.

Schrödinger’s 1935 perspective comes closer to the mod-

ern view: The wavefunction or state vector 
gives us all the information that we can have 
about a quantum system. About entangled 
quantum states, he wrote, “The whole is in 
a definite state, the parts taken individually 
are not,”1 which we now understand as the 
essence of pure-state entanglement. In that 
same 1935 article, Schrödinger also intro-
duced his famous cat as an extreme illustra-

tion of entanglement: A cat physically isolated in a box with 
a decaying atom and vial of cyanide represents a quantum 
state having macroscopic degrees of freedom. If the atom 
were to decay and trigger the release of cyanide, the cat 
would die. The quantum-mechanical description of the sys-
tem is a coherent superposition of one state in which the atom 
is still excited and the cat alive, and another state in which 
the atom has decayed and the cat is dead:

,                             ,⟩ + ⟩( (1
√2 .

The isolated cat-trigger-atom-cyanide system as a whole 
is in a definite entangled state, even though the cat itself ex-
ists as a probabilistic mixture of being alive or dead.

For the three decades following the 1935 articles, the debate 
about entanglement and the “EPR dilemma”—how to make 
sense of the presumably nonlocal effect one particle’s measure-
ment has on another—was philosophical in nature, and for 
many physicists it was nothing more than that. The 1964 pub-
lication2 by John Bell (pictured in figure 1) changed that situ-
ation dramatically. Bell derived correlation inequalities that 
can be violated in quantum mechanics but have to be satisfied 
within every model that is local and complete—so-called local 
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hidden-variable models. Bell’s work made it possible to test 
whether local hidden-variable models can account for ob-
served physical phenomena. Early and ongoing recent exper-
iments3 showing violations of such Bell inequalities have in-
validated local hidden-variable models and lend support to 
the quantum-mechanical view of nature. In particular, an ob-
served violation of a Bell inequality demonstrates the presence 
of entanglement in a quantum system.

In 1995, Peter Shor at AT&T Research discovered that, for 
certain problems, computation with quantum states instead of 
classical bits can result in tremendous savings in computation 
time.4 He found a polynomial-time quantum algorithm that 
solves the problem of finding prime factors of a large integer. 
To date, no classical polynomial-time algorithm for this prob-
lem exists.

Shor’s breakthrough generated an avalanche of interest in 
quantum computation and quantum information theory. In 
this context, a modern theory of entanglement has begun to 
emerge: Researchers now treat entanglement not simply as a 

paradoxical feature of quantum me-
chanics, but as a physical resource for 
quantum-information processing and 
computation. A whole zoo of various 
kinds of pure and mixed entangled 
states may be prepared—well be-
yond the simple pure-state superpo-
sitions that Schrödinger envisioned. 
And those mixed entangled states 

may be measured, distilled, concentrated, diluted, and ma-
nipulated. A surprisingly rich picture of entanglement is now 
taking shape.

Entanglement for the 21st century
The discovery of quantum teleportation by IBM researcher 
Charles Bennett and five collaborators in 1993 marks the 
starting point of the modern view. In quantum teleportation 
(see the article by Charles Bennett in Physics Today, October 
1995, page 24), an experimentalist, Alice, wishes to send an 
unknown state |s⟩ = α|0⟩ + β|1⟩ of a two-level quantum system 
to another experimentalist, Bob, in a distant laboratory. The 
two-level system could refer, for example, to the polarization 
of a single photon, the electronic excitation of an effective 
two-level atom, or the nuclear magnetic spin of a hydrogen 
atom. Alice and Bob do not have the means of directly trans-
mitting the quantum system from one place to another (for 
photons, this could be the case when using a high-loss optical 
fiber), but let us imagine that they do share an entangled 

Figure 1. John Bell in repose. His 
seminal work clarified the difference 
between correlations generated by 
entanglement and correlations in local 
hidden-variable models. Nowadays, 
quantum information theorists exploit 
this difference to create advantages that 
communication protocols using 
entanglement have over classical ones.
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state. Consider the case in which Alice and Bob each have 
one spin of a shared singlet state of two spin-½ particles 
|Ψ −⟩ = 1/√2(|↑, ↓⟩ − |↓, ↑⟩), also called an EPR pair. Alice can 
transmit her spin |s⟩ to Bob by performing a certain joint 
measurement on her spin state |s⟩ and her half of the EPR 
pair. She tells Bob the result of her measurement and, de-
pending on her information, Bob rotates his half of the EPR 
pair to obtain the state |s⟩. The teleportation protocol demon-
strates that the resources of classical communication and the 
sharing of prior EPR entanglement are sufficient to transmit 
an unknown spin state |s⟩. (For the experimental realization, 
see Physics Today, February 1998, page 18.)

The spin-singlet EPR state that Alice and Bob share in 
quantum teleportation is called a maximally entangled state. 
Even though the two spins together constitute a definite pure 
state, each spin state is maximally undetermined or mixed 
when considered separately. In mathematical terms, Alice’s 
local density matrix—obtained by tracing over Bob’s spin 
degrees of freedom, TrB(|Ψ −⟩⟨Ψ −|)—has equal probability for 
spin up and spin down. In keeping with Schrödinger’s un-
derstanding of entanglement, one measures the amount of 
entanglement in a general pure state φ in terms of the lack of 
information about its local parts. The von Neumann entropy 
S(ρ) = −Tr(ρ logρ) is used as a measure of that information. In 
other words, the entropy of entanglement E of the pure state 
φ is equal to the von Neumann entropy of, say, Alice’s density 
matrix ρ = TrB|φ⟩⟨φ|.

Mixed entanglement
In the quantum teleportation scenario, we imagined, unre-
alistically, that Alice and Bob shared an EPR pair free of 
noise or decoherence. More generally, Alice and Bob have 
quantum systems that interact directly or through another 
mediating quantum system—like Rydberg atoms in a laser 
cavity that interact via photons, or two ions in an ion trap 

that interact through phonon modes of the trap.5 A related 
example of interest in quantum computation is an array of 
interconnected ion traps, each holding a small number of 
ions that are coupled by traveling photons or by ions that 
are moved between the traps.6 The interaction, or “quantum 
link,” between a pair of systems is subject to noise or deco-
herence through photon loss or heating of the phonons, for 
instance. For simplicity, assume that Alice and Bob’s local 
operations on the quantum systems—operations on the ions 
in a single trap, say—are perfect, and their exchange of clas-
sical information is also perfectly noise free. That idealiza-
tion enables one to measure the strength of the quantum 
link between the systems.

An essential question is, Given unavoidable noise levels, 
is it possible to establish a strong quantum link—a set of pure 
EPR pairs, in other words—between two systems? If it is, then 
the noise is weak enough to permit the error-free exchange 
of quantum information between the systems, since the tele-
portation through the generated EPR pairs will be error free. 
That capability may come at a certain cost, determined by the 
amount of noisy interaction required to generate an EPR pair. 
If it is not possible to generate EPR pairs, that decoherence in 
the system imposes a fundamental limitation on our ability 
to perform quantum information processing.

The possibility of generating shared EPR entanglement in 
noisy environments is not only of interest in entanglement the-
ory, but is crucial for the realization of long-distance quantum 
communication7 and possibly large-scale quantum computa-
tion. For example, it was recently shown8 that fault-tolerant 
quantum computation can be achieved in the presence of very 
high noise levels in the interaction link—a link can have an 
error rate of two-thirds—between quantum systems that are 
“small” in a particular sense, if one assumes that local quan-
tum processing on each end is (almost) error free.

Pure quantum states have their entanglement quantified 

ψi
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i
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Figure 2. Classically correlated, or separable, 
quantum states are generated when Alice (red) and 
Bob (blue) locally prepare quantum states ψi and φi 
depending on the result i of a classical random 
number generator. If the correlations in a bipartite 
quantum state cannot be produced by such a 
procedure, then the state is considered entangled.
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fairly intuitively by considering the degree 
of local “mixedness” or entropy. However, 
mixtures of entangled and unentangled 
states are murkier: Recognizing which mix-
tures are still entangled may be difficult. So, 
just what physical systems can we call “en-
tangled”? An operational description—
expressing entanglement in terms of its 
negation—is helpful. Suppose that Alice 
and Bob, working in their distant labs, each 
receive the same random number over the 
phone. Depending on the random number, 
each of them locally prepares a certain 
quantum state. The physical state of their 
whole system, expressed as a density ma-
trix, typically exhibits correlations between 
the two systems. However, those correla-
tions would be classical, since they arise 
from classical random numbers. A quantum 
state that can be prepared in this way over 
the phone is called “unentangled” or separa-
ble, and such a state can be mathematically 
expressed as a mixture of unentangled pure 
states (see figure 2). Conversely, a state is 
“entangled” if it cannot be prepared over 
the phone, but requires coherent interaction 
between the two systems or the transmis-
sion of superpositions of quantum states.

Measures of noisy entanglement
For mixed states, it is harder to establish a good measure of 
entanglement, since such a measure has to distinguish be-
tween entropy arising from classical correlations in the 
state—a state of thermal equilibrium, for example—and local 
entropy due to purely quantum correlations. Two measures 
of entanglement that have explicit physical meaning in the 
processing of quantum information have emerged from the 
quantum-link notion just described: the entanglement cost 
E(ρ) of a quantum state and the distillable entanglement D(ρ) 
of a quantum state, first defined in reference 9.

Assume that Alice and Bob have created, using their 
noisy link, many (n) shared copies of an entangled quan-
tum state ρ; we denote such a collection as ρ⊗n. To distill 
some EPR pairs from those copies, Alice and Bob perform 
several rounds of local, error-free operations to their parts 
of the copies and communicate their measurements (or 
other classical data) to each other. Such a protocol is called 
entanglement distillation; figure 3 illustrates one round of 
such a scheme. The aim is to produce fewer states that are, 
however, more entangled than the initial ones. Ideally, the 
protocol produces nearly perfect maximally entangled EPR 
pairs in the limit of a large number of input states ρ⊗n with 
n → ∞. The distillable entanglement D(ρ) is then the number 

of such EPR pairs that can be extracted per copy of ρ in this 
asymptotic limit.

The reverse process also has physical meaning. What is 
the smallest number k of EPR pairs that Alice and Bob ini-
tially need to create a set of n copies of ρ for n → ∞ by local 
error-free operations? This asymptotic ratio k/n is the second 
measure of entanglement, the entanglement cost E(ρ).

Reversible and irreversible manipulation
Attentive readers may have noticed a quirk in our notation: 
The formalism uses the same symbol E to denote both the 
entanglement cost for general states and the entropy of en-
tanglement for pure states. The notation coincidence is 
harmless since the creation cost of a pure state equals the 
local entropy of entanglement E. Furthermore, for a pure 
state φ, it turns out that E(φ) = D(φ) (see box 1 on page 44). 
Physically, this means that the process of entanglement 
dilution—converting EPR pairs into lesser entangled pure 
states φ—can be reversed without loss of entanglement. The 
reverse process is called entanglement concentration and it 
produces D(φ)n = E(φ)n EPR pairs from an initial supply of 
n states φ.

For mixed states, D is believed to be generically less 
than E, which implies that the preparation of mixed states 

EPR
pair (1)

EPR
pair (2)

A = B?

Bob AliceCC

B = 1, 2 A = 1, 2

Figure 3. Entanglement distillation—the conversion of many noisy less-entangled 
states into fewer, more-entangled ones. Imagine two Einstein-Podolsky-Rosen pairs 
that pick up noise when their parts are transmitted to Alice and Bob. Assume that 
the noisy states are still entangled. Alice and Bob can use the following protocol to 
increase the entanglement: (i) each of them applies a controlled-shift operation C to 
the states sent to them; the shift operation acts on the upper green system (1) and 
the lower green system (2). For i and j = 0,1, C|i⟩1 ⊗ |j⟩2 = |i⟩1 ⊗ |i ⊕ j⟩2, where ⊕ means 
addition modulo 2. (ii) Each measures the lower EPR(2) pair in the {|0⟩, |1⟩} basis and 
they compare their results. If the outcomes are the same (checked over the phone), 
the entanglement in the first EPR pair will have increased. The various ways of 
iterating the procedure to distill more entangled states are known as recurrence 
protocols9 or entanglement pumping.8 
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from EPR pairs is a process involving an irreversible loss 
of entanglement. Curiously, the D < E conjecture has only 
been proven for some special classes of mixed states.10 

In 1998, the Horodecki family of Gdańsk, Poland (father 
Ryszard and sons Paweł and Michał), identified a class of 
entangled states that exhibit an extreme form of irreversibil-
ity. They proved that no entanglement can be distilled (D = 0) 
from these “bound entangled states.”11 And for a large set of 
states from that class, irreversibility was established by prov-
ing that entanglement is required to prepare the states E > 0.

Consider the metaphor illustrated in figure 4. If EPR pairs 
were nodes connected by lines or strands that represent 
quantum correlations between particles, then one could think 
of mixed entanglement as entanglement in which the strands 
are simply mixed up. The mixing may make it hard to recon-
struct which particle of Alice is entangled with which particle 
of Bob. Cutting a few strands reduces the clutter, but every 
line cut represents an EPR pair lost (compare this process 
with the distillation protocol in figure 3). Bound entangled 
states are those mixtures that are so thoroughly mixed up that 
every single line has to be cut to remove the noise or clutter 
from the system. But, when every line is cut, no entanglement 
remains to be distilled.

“Black holes” of quantum information
Because the modern theory of entanglement treats quantum 
states as physical resources for processing information, one 
might consider them hierarchically. A simple and ideal world 
would have only two classes of quantum states: unentangled, 
classically correlated states that are useless as a resource in 
quantum teleportation and don’t violate any Bell inequalities, 
and entangled states whose distillation rate D measures their 
usefulness in quantum teleportation. If the distillation rate D 
is nonzero, one can distill from such states some EPR pairs, 
known to violate Bell inequalities.

Bound entanglement tells us that life is not so simple. 
Bound entangled states are costly (E > 0), but useless in var-
ious quantum-information-processing protocols like telepor-
tation. Furthermore, there is evidence that bound entangled 
states do not violate any Bell inequalities.

In those two senses, bound entangled states are the 
“black holes” of quantum information theory. Entangle-
ment goes in but is impossible to recover. And like black 
holes in the theory of gravitation, bound entangled states 
test the limits of our understanding and puzzle us by their 
intrinsic irreversibility.

Bound entanglement and partial transposition
In what sense are bound states so thoroughly mixed up that 
no entanglement at all can be extracted? Bound entangled 
states behave intrinsically differently from every other entan-
gled state: They remain physical under the unphysical opera-
tion of partial transposition.

Researchers realized that they could characterize entan-
glement in terms of how states behave under certain un-
physical operations.12 In 1996, Asher Peres at the Technion–
Israel Institute of Technology in Haifa, Israel, noted that 
matrix transposition is just such an unphysical operation 
when applied to entangled states. Taking the transpose of 
a system’s density matrix produces another density matrix— 
a physically valid result. And taking the transpose of, say, 
Bob’s part of an unentangled state ψA ⊗ ψB yields another 
physically valid quantum state, since each part of the 
quantum state can transform separately; ψA is not changed, 
and the density matrix of ψB is transposed. But when ap-

Box 1. The law of large numbers and 
interconvertible entanglement

Suppose one generates a bit string of length k by k reali-
zations of a binary random variable that takes the value 

1 with probability p and the value 0 with probability 1 − p. 
By the law of large numbers, among the k-bit strings there 
exist typical strings that have a high probability of 
occurring— ones in which approximately pk + O(√k) bits are 
1 and (1 − p)k bits are 0, for instance— and atypical strings, 
the string of all zeros, for example. The key to understanding 
the protocols of pure state entanglement concentration and 
dilution18 is this typicality of sequences.

Suppose Alice and Bob would like to convert some 
shared entangled states φ⊗k with |φ〉 = √p|11〉 + √1 − p|00⟩ 
to a smaller supply of  Einstein- Podolsky- Rosen (EPR) pairs 
Ψ−. In other words, suppose they wish to concentrate their 
entanglement in fewer qubits. Alice and Bob will each do a 
local measurement that counts the number of ones in a bit 
string (but not which bits are ones). With high probability—
approaching 1 as k → ∞—they both have pk as their mea-
surement outcome, indicating that pk bits out of k are one. 
With that outcome, Alice and Bob will have obtained a 
quantum state whose local density matrix has eigenvalues 
that are all equal which number approximately

k
pk

⎛

⎝
⎜

⎞

⎠
⎟ 2kH(p) – O (√k) = 2kH(φ) – O (√k) .

Here, H(p) is the Shannon entropy of the distribution 
(p, 1 − p). Thus Alice and Bob can make a local change of 
basis (a unitary rotation) and truncate the dimension of the 
space to 2n and obtain n ≈ kE(φ) − O(√k) EPR pairs.

In the reverse process of dilution, one converts n EPR 
pairs into k states φ by quantum teleporting an approxima-
tion φk to φ⊗k from Alice to Bob using the EPR pairs. In the 
local spectrum of the state φ⊗k, there exist typical eigen-
states, with approximately pk bits equal to 1 and (1 − p)k bits 
equal to 0, and atypical eigenstates. The approximation φk 
is obtained from φ⊗k by truncating the local spectrum to the 
eigenstates that are in this typical  subspace. The dimension 
of this typical subspace is 2kH(p) + O(√k) and therefore the state 
φk can be teleported using n ≈ kE(φ) + O(√k) EPR pairs. In the 
limit of large k, the conversion ratios k/n of the dilution and 
concentration protocols will be the same and thus prove the 
asymptotic reversibility of the processes.
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plied to part of a pure entangled state, matrix transposi-
tion produces an unphysical result. (For details, see box 2 
on page 46.)

Peres conjectured that partial transposition was the de-
fining criterion for entanglement. In other words, all entan-
gled states—pure or mixed—should map onto unphysical 
states by partial matrix transposition, and all unentangled 
states will remain physical under the same operation.

Remarkably, the truth of that conjecture depends on the 
dimension of the underlying Hilbert spaces or phase spaces. 
If one considers the state of two spin-½ particles, the polar-
ization degrees of freedom of two laser beams, or two 
modes of a light field having a Gaussian Wigner function, 
then, indeed, all entangled states map onto unphysical 
states by partial transposition. However, for two spin-one 
(or higher-dimensional system) particles or a Gaussian light 
field with at least two modes for both Alice and Bob, that is 
no longer true in general; there exist entangled mixed states 
that pass the “partial transpose” test and have therefore lost 
an essential property of entanglement.

The loss of that property is precisely what the Horodecki 
family showed would lead to a zero distillation rate D. En-
tangled states that pass the partial transpose test are the 
bound entangled states in which the entanglement is for-
ever locked or “bound” inside.

Entanglement witnesses
Given that entanglement can be such a subtle property of 
quantum states, just how can one distinguish between en-
tangled and unentangled states? A violation of a Bell in-
equality has been the traditional telltale sign of entangle-
ment in a quantum system. Examples of such experiments3 
used pairs of entangled photons created from nonlinear 
optical processes, especially parametric down-conversion; 
the polarization degrees of freedom of the emitted photons 
carried entanglement. Alice and Bob checked for a Bell in-
equality violation by using local analyzers to measure the 
polarization of the photons along various angles.

Unfortunately, many quantum states, including the set of 
bound entangled states, are not known to violate any Bell 
inequality. And considering the existing limitations on exper-
imental control of quantum systems, experimentalists prefer 
to check for entanglement using the fewest possible local 
measurements. The theoretical framework of an entangle-
ment witness, of which a Bell inequality is a particular exam-
ple,13 addresses those two issues. The defining property of an 
entanglement witness W is that its expectation value with 
respect to any unentangled state ρ is always nonnegative, 
Tr(Wρ) ≥ 0. At the same time, there exist entangled states σ 
for which Tr(Wσ) < 0. Measuring W on a quantum state σ and 
finding a negative expectation value thus establishes the en-
tanglement of σ. The good news is that there is an entangle-
ment witness for every entangled state; given an experimen-
tal means, any entanglement, bound or otherwise, can be 
detected. The bad news is that entanglement witnesses are 

nonlocal observables. Nevertheless, one can measure the ex-
pectation value of W by measuring the expectation value of 
a number of local observables Wi , such that W = ∑

i
Wi . Re-

search is under way to determine the minimal number of 
local measurements for a given witness.14 

Bell’s communication advantages
Given the framework of entanglement witnesses, what is 
special about Bell inequalities? Although they can be consid-
ered a type of entanglement witness, Bell inequalities do not, 
strictly speaking, test for entanglement but for a departure 
from local hidden-variable theories. Interpreted as such, Bell 
inequalities have taken on a whole new life in quantum-
communication science. Researchers consider remote parties 
who have to carry out a certain task with minimal communi-
cation between them. One compares the amount of commu-
nication necessary if those parties are given shared random 
bits (that can be viewed as local hidden variables) or an 
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Figure 4. Irreversibility in noisy entanglement. An entangled 
EPR pair is represented by a single line or strand connecting two 
nodes or particles, one each in Alice and Bob’s labs. The red 
arrow signifies the creation of some mixed entanglement from 
the single strands by local operations on the particles (and 
classical communication, on the phone, say); the process is 
abbreviated LOCC. One state ρ that has five particles for both 
Alice and Bob is created. The entanglement cost is the number of 
EPR pairs that is needed per single noisy state ρ, in this case 7/1 
because Alice and Bob began with seven EPR pairs. But how does 
one reverse the process and extract some single strands—EPR 
pairs—from the noisy mixtures? The distillation rate D is the 
number of EPR pairs that can be extracted per noisy state ρ. Bound 
entangled mixtures are those that are so thoroughly mixed up that 
there are no means to extract any single strands. In other words, 
for a bound entangled state the blue arrow representing the 
distillation rate D is zero.
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entangled quantum state. Sharing entangled states leads to 
savings in communication precisely because the correlations 
in quantum states cannot always be adequately described by 
local hidden-variable theories15 (see the article by Andrew M. 
Steane and Wim van Dam, in Physics Today, February 2000, 
page 35).

What lies beyond
The efforts of the quantum information theorists over the 
past eight years would come to little if the theory were not 
supplemented by an ability to create and manipulate en-
tanglement in the lab. There is a rapidly growing list of 
physical systems—optical and atomic systems especially—
in which it is possible to prepare various kinds of entangled 
states. As discussed previously, the use of photonic degrees 
of freedom, such as polarization or momentum, has been a 
long-time favorite way to create entanglement.3 Entangled 
states consisting of the quadrature observables of different 
modes of light have been prepared in optical parametric 
oscillators and optical fibers.16 Entanglement in the states 
of motion of the valence electrons5 of trapped ions or of 

Rydberg atoms in cavity quantum electrodynamics has 
involved up to four different atoms. Another promising 
avenue is the recently observed entanglement of large en-
sembles of atoms.17 

This short review showcases just a few striking facets of 
the modern theory of entanglement. Most notably, entangle-
ment shared between more than two subsystems is outside 
our scope here. The broader study of entanglement between 
many subsystems may lead the field to better understand the 
role of large-scale entanglement in quantum computation or 
quantum many-body systems.

We have focused on the role of entanglement in the trans-
mission of quantum information. Entanglement also proves 
useful, however, when the goal is to transmit classical infor-
mation as efficiently as possible. Researchers are studying 
many measures of mixed entanglement beyond the two 
most prominent measures discussed in this review. As for 
bound entanglement, there is some evidence that it may 
have a role to play as “helper” entanglement, useless by 
itself, but useful when combined with other sources of en-
tanglement. For entanglement-theory overview articles that 
highlight the field, see volume 1 of Quantum Information and 
Computation (July 2001).
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Box 2. Partial matrix transposition and 
time reversal
Matrix transposition on density matrices is closely related to 
the operation of time  reversal— represented by an anti-
unitary operation— in quantum mechanics. The time- reversal 
operation reverses the momenta, including angular momen-
ta and spin, of a quantum system. It is possible to represent 
the operation by complex conjugation that maps the mo-
mentum operator p^ = −id/dx onto p^ = id/dx . Applied to Her-
mitian density matrices, complex conjugation is identical to 
matrix transposition T : ρ → ρT in a given basis. When applying 
this operation on an entire density matrix ρ, one obtains an-
other valid density matrix ρT = ρ* with nonnegative eigenval-
ues. But when the transposition operation is applied “par-
tially” to half of a joint system— the maximally entangled 
state |Φ⟩AB = 1/√2(|00⟩ + |11⟩), for  example— then one may no 
longer end up with a valid quantum state. Indeed, transposi-
tion in the {|0⟩, |1⟩} basis on Bob’s half of the state ΦAB (and the 
identity operation IA on Alice’s half ) gives (IA ⊗ T)(|Φ⟩⟨Φ|)  = 

I TA⊗( )
⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

⎛

⎝

⎜
⎜1

2

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

1
2

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

,

a matrix that has a negative eigenvalue, and is therefore 
unphysical. The relevance of partial transposition for detect-
ing entanglement in a quantum state was first noted by 
Asher Peres in 1996. He observed that any unentangled state 
remains unentangled under partial transposition, because a 
product state |φA⟩ ⊗ |φB⟩ is mapped onto another product 
state |φA⟩ ⊗ |φB*⟩ by transposition of Bob’s system.


