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The real butterfly effect 
and maggoty apples

Tim Palmer

EVEN THOUGH THE NAVIER–STOKES 

EQUATIONS ARE DETERMINISTIC, IT SEEMS 

THAT YOU CANNOT MAKE PREDICTIONS 

BEYOND A FIXED TIME HORIZON, NO MATTER 

HOW SMALL THE INITIAL UNCERTAINTY.
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W
e think we know why the weather can be so difficult to pre-
dict. It’s the so-called butterfly effect: The flap of a butterfly’s 
wings in Brazil can set off a tornado in Texas a week later. But 
because we can’t observe all the butterflies in Brazil, we can’t 
reliably predict tornadoes in Texas a week in advance.

As described in James Gleick’s masterful 
1987 exposition of chaos theory,1 the discov-
ery of the butterfly effect is generally 
attributed to MIT meteorologist Edward 
Lorenz. In 1963 he famously constructed a 
model of chaos based on three deterministic 
coupled nonlinear differential equations.2 
Being chaotic, the evolution of the state of 
that system is extremely sensitive to the 
specification of the initial conditions. There-
fore, Lorenz’s three-component model 
describes both the butterfly effect and the 
unpredictability of the weather.

At least, that’s the folklore. But it isn’t 
quite correct. The butterfly effect was first 
described by Lorenz in his talk at the 1972 
meeting of the American Association for 
the Advancement of Science.3 The title was 

indeed “Predictability: Does the Flap of a 
Butterfly’s Wings in Brazil Set Off a Tornado 
in Texas?” In the talk, Lorenz noted that 
errors in forecasting the position and inten-
sity of low-pressure cyclonic weather sys-
tems tend to double every three days or so. 
Errors in the individual clouds that are 
embedded in those weather systems, how-
ever, tend to double on shorter time scales. 
And errors in individual eddies in the sub-
cloud turbulence double on time scales 
shorter still.

The nonlinear Navier–Stokes equations 
of fluid mechanics couple the subcloud, 
cloud, and cyclone scales together. Hence, 
Lorenz noted, even if you could perfectly 
observe the atmosphere on the 1000 km 
scale of the low-pressure system, you 



32  PHYSICS TODAY | MAY 2024

THE REAL BUTTERFLY EFFECT

would still not be able to predict the structure and intensity of 
the weather system indefinitely into the future. Initial uncer-
tainties on kilometer or smaller length scales would eventually 
limit your ability to predict the larger cyclone. The question 
Lorenz posed was this: How long does it take for uncertainties 
in the initial conditions on subcloud scales to affect a forecast-
er’s ability to predict position and intensity on the much larger 
cyclonic scales? (See figure 1.)

The real butterfly effect
Lorenz’s 1963 paper cannot address that question—and hence 
the notion of the butterfly effect as Lorenz intended it to mean 
in his 1972 talk—because the 1963 model equations do not de-
scribe how fluid flows at different spatial scales interact. In fact, 
in his 1972 talk, Lorenz was informally discussing results from 
a highly technical paper he had published in 1969 in the Swed-
ish journal Tellus. The abstract of the paper, titled “The predict-
ability of a flow which possesses many scales of motion,” be-
gins as follows: 

It is proposed that certain formally deterministic 
fluid systems which possess many scales of mo-
tion are observationally indistinguishable from 
indeterministic systems; specifically, that two 
states of the system differing initially by a small 
“observational error” will evolve into two states 
differing as greatly as randomly chosen states of 
the system within a finite time interval, which 
cannot be lengthened by reducing the amplitude 
of the initial error.4

The last clause of the sentence is worth reading a couple of 
times, because it is so surprising. Lorenz is describing chaotic 
unpredictability in the extreme. That type of unpredictability 
is much greater than that in his 1963 model of chaos. In the 
early model, you can predict as far ahead as you like by making 
the initial error sufficiently small. From a mathematical stand-
point, Lorenz’s 1963 model has the property that the evolved 

state depends continuously on the initial 
state. As the initial state tends to the true 
state, so, too, does the forecast state.

On the basis of the Navier–Stokes par-
tial differential equations, Lorenz’s 1969 
paper describes systems that do not plausi-
bly have that continuity property. Indeed, 
the limit of vanishing initial error, which I’ll 
discuss in more detail below, is what’s 
known as a singular limit.

Lorenz, in focus
To better appreciate what Lorenz proposed in his 1969 paper, 
suppose that we can observe the initial state of the atmosphere 
perfectly, with no errors or gaps. That does not mean that we 
can forecast perfectly, because to make a forecast of the 
weather, you must assimilate observations into a computa-
tional weather model, thus creating a set of initial conditions 
for the model.

The weather model approximates the Navier–Stokes and 
other relevant atmospheric equations using a finite, 3D array 
of so-called gridboxes. Collectively, the gridboxes cover the 
whole atmosphere and oceans. (Some models use finite sets of 
orthogonal functions, such as spherical harmonics, but that 
doesn’t change the argument.) Inside a gridbox, the weather 
model erroneously assumes that the atmosphere is completely 
homogeneous. The horizontal size of each gridbox in the very 
best global weather-forecast models is currently around 10 km.

Next, let’s suppose that we can make accurate weather fore-
casts of low-pressure systems on average up to seven days ahead 
with our weather model. In the idealized case of perfect obser-
vations, the source of error that limits the forecast’s accuracy lies 
in the gridbox-homogeneity assumption. Hence, it is reasonable 
to ask (our employers) for a bigger computer that would allow 
the weather equations to be integrated with a gridbox half the 
size. The incorrect homogeneity assumption would then be re-
stricted to scales smaller than before by a factor of two.

Would that factor of two double the range of forecast accu-
racy from 7 days to 14 days? In his 1969 paper, Lorenz argues 
that it does not. The errors associated with small scales that 
were unresolved in the old model but are subsequently re-
solved in the new one would grow faster than errors in the 
smallest scales resolved in the old model. For example, if the 
error-doubling time of the newly resolved scales was half the 
error-doubling time of the previously resolved scales—meaning 
that the errors grow twice as fast—the predictability time with 
the new weather model will only increase by a factor of (1 + ½), 
which is significantly less than a factor of two.

Indeed, if later still we could afford a computer that would 

FIGURE 1. A LOW-PRESSURE CYCLONE 
system contains many individual clouds. Each 
individual cloud is a turbulent system 
comprising many small eddies. The real 
butterfly effect illustrates how uncertainties 
in the starting conditions for any of those 
whirls affect our ability to predict the cyclonic 
system itself. (Courtesy of Jacques Descloitres, 
MODIS Rapid Response Team, NASA/GSFC.)
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allow a further halving of the size of the gridboxes, the predict-
ability time would only be increased from (1 + ½) × 7 days to 
(1 + ½ + ¼) × 7 days. If you carried on like that—halving the 
gridbox an infinite number of times—the predictability time 
would not be infinite. Rather, it would be (1 + ½ + ¼ + ⅛ + 1/16 
. . .) × 7, or 14 days. With infinitesimally small gridboxes, fore-
casters would have increased the predictability time of the 
original model by only a factor of two. (The existence of that 
finite limit is consistent with the Kolmogorov energy spectrum 
for 3D fluid turbulence.)

Singular limits
But that sounds contradictory. After an infinite number of grid-
box halvings, the (now infinitely powerful) computer rep-
resents the Navier–Stokes equations precisely. And because 
those equations are completely deterministic, we should be 
able to forecast infinitely far ahead.

To understand what accounts for the short forecast range, 
imagine having a bucket of apples that contain maggots. If you 
bite into an apple and discover half a maggot, then you have 
eaten half a maggot—an unpleasant experience. However, if 
you bite into an apple and discover a quarter of a maggot, then 
that’s even worse because you have eaten three-quarters of a 
maggot. More generally, if you bite into an apple and discover 
1/n of a maggot, you have eaten 1 − 1/n of a maggot.

The larger the value of n, the greater the fraction of the 
maggot you have eaten, and the more unpleasant the experi-
ence. You might therefore imagine that the limit n = ∞ of a se-
quence of such apple bitings describes the most unpleasant 
experience. But it doesn’t. If you bite into an apple and discover 
no maggot, you may not have eaten a maggot at all! (A tiny 
maggot fraction is qualitatively different from no maggot.)

That example, first described by theoretical physicist Michael 
Berry, is known as a singular limit (see his Reference Frame, 
Physics Today, May 2002, page 10). Such limits abound in phys-
ics. For example, blackbody radiators never experience a UV 
catastrophe—the prediction that the intensity of their emitted 
radiation goes to infinity as wavelength decreases—provided 

that Planck’s constant h remains nonzero (no matter how small 
it is). Set h precisely to zero, however, and the classical 
Rayleigh–Jeans spectrum diverges.

In another example, as long as a fluid’s viscosity remains 
nonzero, it is able to generate aerodynamic lift across an airfoil, 
no matter how small the viscosity may be. If viscosity is set to 
zero, however, the boundary condition across the airfoil qual-
itatively changes. The lifting force of a 3D body in incompress-
ible, inviscid, irrotational flow is zero, a phenomenon known 
as d’Alembert’s paradox.

There is also a singular limit at the heart of what I call the 
real butterfly effect.5 No matter how small the initial uncer-
tainty, the butterfly effect limits predictability to a finite time 
horizon. Only when the initial uncertainty is identically zero 
can you potentially predict arbitrarily far ahead with the 
Navier–Stokes equations. That’s an unrealistic limit, of course. 
Is the singular predictability limit a rigorous mathematical 
property of the Navier–Stokes equations? No one knows. The 
problem of whether solutions depend continuously on initial 
conditions is related to the unsolved Clay Mathematics Insti-
tute Millennium Prize Problem concerning the existence of 
smooth, unique solutions to the Navier–Stokes equations.

Indeterministic results
That is not to say that Lorenz’s more famous 1963 model of 
chaos has nothing useful to say about the predictability of 
weather. I have used the model on many occasions to demon-
strate that the predictability of a nonlinear system is not a fixed 
quantity. It varies from one initial condition to another, as 
shown in figure 2. Hence, although the average predictability 
of day-to-day weather may be around two weeks, it can some-
times be longer and sometimes shorter than that. Meteorologists 
can estimate such flow-dependent predictability by running 
ensembles of forecasts—typically 50 are run from almost but 
not quite identical initial conditions. When the atmosphere is 
in a predictable state, the ensemble forecast spread will be rel-
atively small. When the atmosphere is in an unpredictable 
state, the spread will be relatively large.

a b c

FIGURE 2. PREDICTABILITY in a nonlinear system, such as this Lorenz attractor, is dependent on the initial conditions, whose 
uncertainties are represented by the size and location of a circular ring. (a) The ring of uncertainty does not grow in time at all. (b) Started 
from a lower position, the ring distorts into banana and boomerang shapes, making it unclear whether the actual system undergoes a 
transition from the left-hand lobe to the right-hand one. (c) With the ring initiated almost midway between the lobes, the time evolution 
of the attractor is now very uncertain, and there is no predictability. (Adopted from ref. 11.)
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Ensemble prediction has transformed weather forecasting 
over recent years. For example, it determines the probability of 
precipitation on your weather app. More importantly, it is 
changing the way in which humanitarian and disaster relief 
agencies respond to extreme weather events. In the past, the 
unreliability of deterministic predictions meant that they would 
typically wait for an extreme event to occur before sending in 
medicine, food, water, and emergency shelter to stricken re-
gions. Now, on the basis of a cost-benefit analysis, those agencies 
predetermine a threshold probability for extreme weather. And 
if the ensemble-based forecast probabilities exceed the thresh-
old, the agencies take what’s known as “anticipatory action,” 
sending in emergency supplies ahead of the weather event.

The real butterfly effect implies that although the governing 
partial differential equations are deterministic, any computa-
tional representation of the equations will be indeterministic. 
That’s not, however, the way weather and climate models have 
traditionally been formulated. The processes in such models that 
cannot be resolved explicitly—cloud formation, the flow of air 
over small mountains, and ocean mixing, for example—have 
been represented by deterministic parameterization formulas 
that mimic molecular viscosity and diffusion.

The real butterfly effect, however, implies that no consistent 
way to represent those subgrid processes by deterministic formulas 
exists. One way to alleviate the problem is to make the parameter-
ization formulas in weather and climate models explicitly stochas-
tic.6,7 The first stochastic-parameterization scheme was introduced 
into a weather forecast model in 1999. And today, most weather 
models incorporate some form of stochastic parameterization.

Even so, many climate models—even those contributing to 
assessment reports from the Intergovernmental Panel on Climate 
Change—are still formulated with deterministic closure 
schemes. Such models are inconsistent with the Navier–Stokes 
equations’ scaling symmetries, which contributes to their 
(sometimes substantial) long-term systematic errors.8 Stochas-

ticity can have unexpected effects in nonlinear models.9 Figure 
3, for example, shows that adding noise to the Lorenz 1963 
equations helps to stabilize the Lorenz-attractor regimes. The 
stabilizing effect is quite counterintuitive until you realize that 
the model makes transitions from one regime to the other in 
small regions of state space. Those transitions can be disrupted 
(and thus the regimes stabilized) by small amounts of noise.

Weather forecasting with artificial intelligence?
Artificial intelligence (AI) is now being used to make weather 
forecasts with levels of skill comparable to more traditional 
physics-based models. For both training and forecasting, those 
AI-based models still use sets of gridded, global atmospheric 
states, in which atmospheric observations have been assimi-
lated into a global physics-based model. Can such AI forecast 
systems simulate the real butterfly effect?

To answer that question, Tobias Selz and George Craig (both 
at the German Aerospace Center in Oberpfaffenhofen) com-
pared the growth of estimates of forecast uncertainty using AI 
and physics-based models last year.10 The estimate of the initial 
uncertainty was obtained by taking the difference between two 
randomly chosen members of an ensemble of data assimila-
tions, which are used in ensemble weather forecasting. The 
members of the ensemble differ only in the precise values of 
the observations being assimilated into the model—the varia-
tions in those precise values being consistent with observa-
tional error.
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FIGURE 3. ADDING NOISE to Edward Lorenz’s 1963 system of 
equations describing chaos affects its dynamics in a nonintuitive 
way. The top plot shows a time series of the X variable in the 
standard (deterministic) Lorenz model. The bottom plot has a much 
more pronounced structure because noise is present. The noise 
effectively stabilizes the regimes of the Lorenz attractor, shown in 
figure 2. (Adapted from ref. 11.)
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FIGURE 4. THE DIFFERENCE IN A MEASURE of atmospheric 
kinetic energy between pairs of forecasts as a function of forecast 
time.  The solid black and orange lines show results from a physics-
based (Icon) and artificial intelligence (Pangu) model, respectively, 
when the initial difference between the pairs is comparable with 
the typical uncertainty in the initial conditions. The dashed lines 
show differences in kinetic energy when the initial difference is 
reduced by a factor of 1000. The blue and black dashed lines show 
the difference in a high- and low-resolution physics-based model, 
respectively. The orange dashed line shows the lack of growth from 
an AI model with similar reduced initial perturbation. AI-forecast 
systems don’t capture the physics of the real butterfly effect. 
(Adapted from ref. 10.)
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By construction, the initial error for a weather forecast is 
spread across a range of scales—from weather systems with a 
horizontal wavelength of thousands of kilometers down to the 
model’s grid scale of 10 kilometers or so. The theory of data 
assimilation predicts that if the spacing between atmospheric 
observations is typically a few tens of kilometers, then obser-
vations do well at determining the large-scale initial weather 
patterns, with little error. On kilometer scales, however, the 
errors will become almost as large as it is possible for them to 
be. Small-scale errors in the initial conditions are thus almost 
saturated, while large-scale errors have plenty of opportunity 
to grow. Accordingly, errors grow almost immediately at the 
large scale but not at all at the small scale.

To study the real butterfly effect, Selz and Craig divided the 
initial-error field by a factor of 1000. Then, the small-scale errors 
were far from saturated. Because they grow so much faster 
than the large-scale errors, the errors should be dominated by 
the small scales. That is precisely what is seen when a 
physics-based model is used. And Selz and Craig used both a 
low-resolution and a high-resolution physics-based model to 
demonstrate it. Figure 4 shows the divergence of pairs of fore-
casts with small initial differences.

The high-resolution model did a much better job at simu-
lating the rapid growth of the small-scale errors, but the 
low-resolution model was not completely hopeless; the growth 
was simply less dramatic. By contrast, the AI system com-
pletely failed to predict the growth of small-scale errors. That’s 
perhaps not surprising. In the real world, as I mentioned, the 

small-scale errors are already saturated at the initial time. The 
AI system never learns about the real butterfly effect from its 
training data. The results demonstrate that you must be cau-
tious when applying AI to the weather-forecast problem; it 
does not contain the physics of the real butterfly effect.

As I discuss in my book The Primacy of Doubt,11 studying the 
predictability of weather and climate reveals some deep and 
important properties of nonlinear systems. They are relevant 
to many problems in applied and fundamental science—in 
various fields, including social science and the foundations of 
quantum physics. In short, taking a rigorous approach to the 
science of uncertainty can help us improve our ability to both 
predict and understand our very chaotic world.
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