The real buttertly effect
and maggoty apples

Tim Palmer

EVEN THOUGH THE NAVIER-STOKES
EQUATIONS ARE DETERMINISTIC, IT SEEMS
THAT YOU CANNOT MAKE PREDICTIONS
BEYOND A FIXED TIME HORIZON, NO MATTER
HOW SMALL THE INITIAL UNCERTAINTY.
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e think we know why the weather can be so difficult to pre-
dict. It’s the so-called butterfly effect: The flap of a butterfly’s
wings in Brazil can set off a tornado in Texas a week later. But
because we can’t observe all the butterflies in Brazil, we can’t
reliably predict tornadoes in Texas a week in advance.

As described in James Gleick’s masterful
1987 exposition of chaos theory,' the discov-
ery of the butterfly effect is generally
attributed to MIT meteorologist Edward
Lorenz. In 1963 he famously constructed a
model of chaos based on three deterministic
coupled nonlinear differential equations.?
Being chaotic, the evolution of the state of
that system is extremely sensitive to the
specification of the initial conditions. There-
fore, Lorenz’s three-component model
describes both the butterfly effect and the
unpredictability of the weather.

At least, that’s the folklore. But it isn't
quite correct. The butterfly effect was first
described by Lorenz in his talk at the 1972
meeting of the American Association for
the Advancement of Science.’ The title was

indeed “Predictability: Does the Flap of a
Butterfly’s Wings in Brazil Set Off a Tornado
in Texas?” In the talk, Lorenz noted that
errors in forecasting the position and inten-
sity of low-pressure cyclonic weather sys-
tems tend to double every three days or so.
Errors in the individual clouds that are
embedded in those weather systems, how-
ever, tend to double on shorter time scales.
And errors in individual eddies in the sub-
cloud turbulence double on time scales
shorter still.

The nonlinear Navier-Stokes equations
of fluid mechanics couple the subcloud,
cloud, and cyclone scales together. Hence,
Lorenz noted, even if you could perfectly
observe the atmosphere on the 1000 km
scale of the low-pressure system, you
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would still not be able to predict the structure and intensity of
the weather system indefinitely into the future. Initial uncer-
tainties on kilometer or smaller length scales would eventually
limit your ability to predict the larger cyclone. The question
Lorenz posed was this: How long does it take for uncertainties
in the initial conditions on subcloud scales to affect a forecast-
er’s ability to predict position and intensity on the much larger
cyclonic scales? (See figure 1.)

The real butterfly effect

Lorenz’s 1963 paper cannot address that question—and hence
the notion of the butterfly effect as Lorenz intended it to mean
in his 1972 talk—because the 1963 model equations do not de-
scribe how fluid flows at different spatial scales interact. In fact,
in his 1972 talk, Lorenz was informally discussing results from
a highly technical paper he had published in 1969 in the Swed-
ish journal Tellus. The abstract of the paper, titled “The predict-
ability of a flow which possesses many scales of motion,” be-
gins as follows:

It is proposed that certain formally deterministic
fluid systems which possess many scales of mo-
tion are observationally indistinguishable from
indeterministic systems; specifically, that two
states of the system differing initially by a small
“observational error” will evolve into two states
differing as greatly as randomly chosen states of
the system within a finite time interval, which
cannot be lengthened by reducing the amplitude
of the initial error.*

The last clause of the sentence is worth reading a couple of
times, because it is so surprising. Lorenz is describing chaotic
unpredictability in the extreme. That type of unpredictability
is much greater than that in his 1963 model of chaos. In the
early model, you can predict as far ahead as you like by making
the initial error sufficiently small. From a mathematical stand-
point, Lorenz’s 1963 model has the property that the evolved
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FIGURE 1. A LOW-PRESSURE CYCLONE
system contains many individual clouds. Each
individual cloud is a turbulent system
comprising many small eddies. The real
butterfly effect illustrates how uncertainties
in the starting conditions for any of those
whirls affect our ability to predict the cyclonic
system itself. (Courtesy of Jacques Descloitres,
MODIS Rapid Response Team, NASA/GSFC.)

state depends continuously on the initial
state. As the initial state tends to the true
state, so, too, does the forecast state.

On the basis of the Navier-Stokes par-
tial differential equations, Lorenz’s 1969
paper describes systems that do not plausi-
bly have that continuity property. Indeed,
the limit of vanishing initial error, which I'll
discuss in more detail below, is what’s
known as a singular limit.

Lorenz, in focus

To better appreciate what Lorenz proposed in his 1969 paper,
suppose that we can observe the initial state of the atmosphere
perfectly, with no errors or gaps. That does not mean that we
can forecast perfectly, because to make a forecast of the
weather, you must assimilate observations into a computa-
tional weather model, thus creating a set of initial conditions
for the model.

The weather model approximates the Navier-Stokes and
other relevant atmospheric equations using a finite, 3D array
of so-called gridboxes. Collectively, the gridboxes cover the
whole atmosphere and oceans. (Some models use finite sets of
orthogonal functions, such as spherical harmonics, but that
doesn’t change the argument.) Inside a gridbox, the weather
model erroneously assumes that the atmosphere is completely
homogeneous. The horizontal size of each gridbox in the very
best global weather-forecast models is currently around 10 km.

Next, let’s suppose that we can make accurate weather fore-
casts of low-pressure systems on average up to seven days ahead
with our weather model. In the idealized case of perfect obser-
vations, the source of error that limits the forecast’s accuracy lies
in the gridbox-homogeneity assumption. Hence, it is reasonable
to ask (our employers) for a bigger computer that would allow
the weather equations to be integrated with a gridbox half the
size. The incorrect homogeneity assumption would then be re-
stricted to scales smaller than before by a factor of two.

Would that factor of two double the range of forecast accu-
racy from 7 days to 14 days? In his 1969 paper, Lorenz argues
that it does not. The errors associated with small scales that
were unresolved in the old model but are subsequently re-
solved in the new one would grow faster than errors in the
smallest scales resolved in the old model. For example, if the
error-doubling time of the newly resolved scales was half the
error-doubling time of the previously resolved scales —meaning
that the errors grow twice as fast—the predictability time with
the new weather model will only increase by a factor of (1 + %2),
which is significantly less than a factor of two.

Indeed, if later still we could afford a computer that would
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FIGURE 2. PREDICTABILITY in a nonlinear system, such as this Lorenz attractor, is dependent on the initial conditions, whose
uncertainties are represented by the size and location of a circular ring. (a) The ring of uncertainty does not grow in time at all. (b) Started
from a lower position, the ring distorts into banana and boomerang shapes, making it unclear whether the actual system undergoes a
transition from the left-hand lobe to the right-hand one. (c) With the ring initiated almost midway between the lobes, the time evolution
of the attractor is now very uncertain, and there is no predictability. (Adopted from ref. 11.)

allow a further halving of the size of the gridboxes, the predict-
ability time would only be increased from (1 + 2) x 7 days to
(1 + Y%+ %) x 7 days. If you carried on like that—halving the
gridbox an infinite number of times—the predictability time
would not be infinite. Rather, it would be (1 + %2 + V4 + V5 + V4

..) x 7, or 14 days. With infinitesimally small gridboxes, fore-
casters would have increased the predictability time of the
original model by only a factor of two. (The existence of that
finite limit is consistent with the Kolmogorov energy spectrum
for 3D fluid turbulence.)

Singular limits

But that sounds contradictory. After an infinite number of grid-
box halvings, the (now infinitely powerful) computer rep-
resents the Navier-Stokes equations precisely. And because
those equations are completely deterministic, we should be
able to forecast infinitely far ahead.

To understand what accounts for the short forecast range,
imagine having a bucket of apples that contain maggots. If you
bite into an apple and discover half a maggot, then you have
eaten half a maggot—an unpleasant experience. However, if
you bite into an apple and discover a quarter of a maggot, then
that’s even worse because you have eaten three-quarters of a
maggot. More generally, if you bite into an apple and discover
1/n of a maggot, you have eaten 1 — 1/n of a maggot.

The larger the value of n, the greater the fraction of the
maggot you have eaten, and the more unpleasant the experi-
ence. You might therefore imagine that the limit n = e of a se-
quence of such apple bitings describes the most unpleasant
experience. But it doesn’t. If you bite into an apple and discover
no maggot, you may not have eaten a maggot at all! (A tiny
maggot fraction is qualitatively different from no maggot.)

That example, first described by theoretical physicist Michael
Berry, is known as a singular limit (see his Reference Frame,
Puysics Tobay, May 2002, page 10). Such limits abound in phys-
ics. For example, blackbody radiators never experience a UV
catastrophe—the prediction that the intensity of their emitted
radiation goes to infinity as wavelength decreases—provided

that Planck’s constant 1 remains nonzero (no matter how small
it is). Set h precisely to zero, however, and the classical
Rayleigh-Jeans spectrum diverges.

In another example, as long as a fluid’s viscosity remains
nonzero, it is able to generate aerodynamic lift across an airfoil,
no matter how small the viscosity may be. If viscosity is set to
zero, however, the boundary condition across the airfoil qual-
itatively changes. The lifting force of a 3D body in incompress-
ible, inviscid, irrotational flow is zero, a phenomenon known
as d’Alembert’s paradox.

There is also a singular limit at the heart of what I call the
real butterfly effect.® No matter how small the initial uncer-
tainty, the butterfly effect limits predictability to a finite time
horizon. Only when the initial uncertainty is identically zero
can you potentially predict arbitrarily far ahead with the
Navier-Stokes equations. That’s an unrealistic limit, of course.
Is the singular predictability limit a rigorous mathematical
property of the Navier—Stokes equations? No one knows. The
problem of whether solutions depend continuously on initial
conditions is related to the unsolved Clay Mathematics Insti-
tute Millennium Prize Problem concerning the existence of
smooth, unique solutions to the Navier-Stokes equations.

Indeterministic results

That is not to say that Lorenz’s more famous 1963 model of
chaos has nothing useful to say about the predictability of
weather. I have used the model on many occasions to demon-
strate that the predictability of a nonlinear system is not a fixed
quantity. It varies from one initial condition to another, as
shown in figure 2. Hence, although the average predictability
of day-to-day weather may be around two weeks, it can some-
times be longer and sometimes shorter than that. Meteorologists
can estimate such flow-dependent predictability by running
ensembles of forecasts—typically 50 are run from almost but
not quite identical initial conditions. When the atmosphere is
in a predictable state, the ensemble forecast spread will be rel-
atively small. When the atmosphere is in an unpredictable
state, the spread will be relatively large.
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FIGURE 3. ADDING NOISE to Edward Lorenz's 1963 system of
equations describing chaos affects its dynamics in a nonintuitive
way. The top plot shows a time series of the X variable in the
standard (deterministic) Lorenz model. The bottom plot has a much
more pronounced structure because noise is present. The noise
effectively stabilizes the regimes of the Lorenz attractor, shown in
figure 2. (Adapted from ref. 11.)

Ensemble prediction has transformed weather forecasting
over recent years. For example, it determines the probability of
precipitation on your weather app. More importantly, it is
changing the way in which humanitarian and disaster relief
agencies respond to extreme weather events. In the past, the
unreliability of deterministic predictions meant that they would
typically wait for an extreme event to occur before sending in
medicine, food, water, and emergency shelter to stricken re-
gions. Now, on the basis of a cost-benefit analysis, those agencies
predetermine a threshold probability for extreme weather. And
if the ensemble-based forecast probabilities exceed the thresh-
old, the agencies take what’s known as “anticipatory action,”
sending in emergency supplies ahead of the weather event.

The real butterfly effect implies that although the governing
partial differential equations are deterministic, any computa-
tional representation of the equations will be indeterministic.
That's not, however, the way weather and climate models have
traditionally been formulated. The processes in such models that
cannot be resolved explicitly —cloud formation, the flow of air
over small mountains, and ocean mixing, for example—have
been represented by deterministic parameterization formulas
that mimic molecular viscosity and diffusion.

The real butterfly effect, however, implies that no consistent
way to represent those subgrid processes by deterministic formulas
exists. One way to alleviate the problem is to make the parameter-
ization formulas in weather and climate models explicitly stochas-
tic.%” The first stochastic-parameterization scheme was introduced
into a weather forecast model in 1999. And today, most weather
models incorporate some form of stochastic parameterization.

Even so, many climate models—even those contributing to
assessment reports from the Intergovernmental Panel on Climate
Change—are still formulated with deterministic closure
schemes. Such models are inconsistent with the Navier-Stokes
equations’ scaling symmetries, which contributes to their
(sometimes substantial) long-term systematic errors.® Stochas-
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ticity can have unexpected effects in nonlinear models.’ Figure
3, for example, shows that adding noise to the Lorenz 1963
equations helps to stabilize the Lorenz-attractor regimes. The
stabilizing effect is quite counterintuitive until you realize that
the model makes transitions from one regime to the other in
small regions of state space. Those transitions can be disrupted
(and thus the regimes stabilized) by small amounts of noise.

Weather forecasting with artificial intelligence?

Artificial intelligence (AI) is now being used to make weather
forecasts with levels of skill comparable to more traditional
physics-based models. For both training and forecasting, those
Al-based models still use sets of gridded, global atmospheric
states, in which atmospheric observations have been assimi-
lated into a global physics-based model. Can such Al forecast
systems simulate the real butterfly effect?

To answer that question, Tobias Selz and George Craig (both
at the German Aerospace Center in Oberpfaffenhofen) com-
pared the growth of estimates of forecast uncertainty using Al
and physics-based models last year.'” The estimate of the initial
uncertainty was obtained by taking the difference between two
randomly chosen members of an ensemble of data assimila-
tions, which are used in ensemble weather forecasting. The
members of the ensemble differ only in the precise values of
the observations being assimilated into the model—the varia-
tions in those precise values being consistent with observa-
tional error.
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FIGURE 4. THE DIFFERENCE IN A MEASURE of atmospheric
kinetic energy between pairs of forecasts as a function of forecast
time. The solid black and orange lines show results from a physics-
based (Icon) and artificial intelligence (Pangu) model, respectively,
when the initial difference between the pairs is comparable with
the typical uncertainty in the initial conditions. The dashed lines
show differences in kinetic energy when the initial difference is
reduced by a factor of 1000. The blue and black dashed lines show
the difference in a high- and low-resolution physics-based model,
respectively. The orange dashed line shows the lack of growth from
an Al model with similar reduced initial perturbation. Al-forecast
systems don't capture the physics of the real butterfly effect.
(Adapted from ref. 10.)




By construction, the initial error for a weather forecast is
spread across a range of scales—from weather systems with a
horizontal wavelength of thousands of kilometers down to the
model’s grid scale of 10 kilometers or so. The theory of data
assimilation predicts that if the spacing between atmospheric
observations is typically a few tens of kilometers, then obser-
vations do well at determining the large-scale initial weather
patterns, with little error. On kilometer scales, however, the
errors will become almost as large as it is possible for them to
be. Small-scale errors in the initial conditions are thus almost
saturated, while large-scale errors have plenty of opportunity
to grow. Accordingly, errors grow almost immediately at the
large scale but not at all at the small scale.

To study the real butterfly effect, Selz and Craig divided the
initial-error field by a factor of 1000. Then, the small-scale errors
were far from saturated. Because they grow so much faster
than the large-scale errors, the errors should be dominated by
the small scales. That is precisely what is seen when a
physics-based model is used. And Selz and Craig used both a
low-resolution and a high-resolution physics-based model to
demonstrate it. Figure 4 shows the divergence of pairs of fore-
casts with small initial differences.

The high-resolution model did a much better job at simu-
lating the rapid growth of the small-scale errors, but the
low-resolution model was not completely hopeless; the growth
was simply less dramatic. By contrast, the Al system com-
pletely failed to predict the growth of small-scale errors. That’s
perhaps not surprising. In the real world, as I mentioned, the

small-scale errors are already saturated at the initial time. The
Al system never learns about the real butterfly effect from its
training data. The results demonstrate that you must be cau-
tious when applying Al to the weather-forecast problem; it
does not contain the physics of the real butterfly effect.

As I discuss in my book The Primacy of Doubt," studying the
predictability of weather and climate reveals some deep and
important properties of nonlinear systems. They are relevant
to many problems in applied and fundamental science—in
various fields, including social science and the foundations of
quantum physics. In short, taking a rigorous approach to the
science of uncertainty can help us improve our ability to both
predict and understand our very chaotic world.
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