Claire Lamman is a cosmologist, science communicator, and PhD student at the Center for Astrophysics | Harvard & Smithsonian in Cambridge, Massachusetts.

Translating scientific papers for the public

Claire Lamman

Eager to make your research accessible to a general audience without glossing over all the effort that has gone into your work? Try creating "doodle summaries" of your papers.

ommunicating scientific results to a general audience is difficult. Communicating the tangle of methods and analysis that support neatly packaged results, not to mention the uncertainties, is even more challenging. To lift the hood on the process, I suggest a method to explain science in the most direct way possible: by doodling annotations on scientific papers.

Exploding stars tell us the universe is growing really fast

Adam G. Riess, Alexei V. Filippenko, Peter Challis, Alejandro Clocchiattl, Alan Dier Peter M. Garnavich,2 Ron L. Gilliland, Craig J. Hogan, Saurabh Jha,2 Robert P. Kirshni B. Leibundgut, M. M. Phillips, David Reiss, Brian P. Schmidt, Robert A. Schommer,

This to ...

R. Chris Smith, The J. Spyromiljo, Christopher Stubbs, 4

This took an entire team NICHOLAS B. SUNTZEFF,7 AND JOHN TONRY11

ABSTRACT

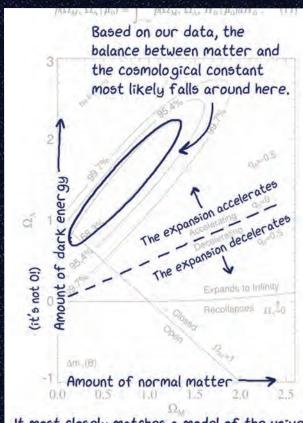
We present spectral and photometric observation of these objects are determined by methods that employ range $0.16 \le z \le 0.62$. The luminosity distances of these objects are determined by methods that employ relations We observed some supernovae and found them to be farther on our supernovae away than expected. After some very careful statistics, ng cosmological para we're pretty confident that there is something extra out (i.e., the The distances of the high-rethere besides just light and matter n expected in a low mass density ($\Omega_M = 0.2$) universe without a cosmological constant. Different bath curve fitting methods, SN Ia subsamples, and prior consome type of energy and that a dark side with positive cosmological constant implies that the universe is 14 billion years young. But constraint on the density other than plenty of life ahead of her because density of life ahead of her because density of consistent during the confidence level our fate is apparently sealed in an eternal expansion ensity, $\Omega_{\rm w}$ For a flat universe prior $(\Omega_M + \Omega_\Lambda = 1)$, the spectroscopically confirmed SNe Ia require $\Omega_\Lambda > 0$ at 7 and 9 σ formal statistical significance for the two different fitting methods. A universe closed by termidark energy matter (i.e., $\Omega_M = 1$) is formally ruled out at the $\frac{1}{2}$ $\frac{1}$ tainties in the current Cepheid distance scale. We estimate the likely effect of several sources This Wash atticerror, including progenitor and metallicity evolution, extinction, sample selection to the current Cepheid distance scale. atic error, including progenitor and metallicity evolution, extinction, sample selection free a few iterations turbations in the expansion rate, gravitational lensing, and sample contamination. Present from funny energy facts appear to reconcile the data with $\Omega_{\lambda}=0$ and a>0including "funny energy".) smology: observations - supernovae: general

BACKGROUND INFO

This paper reports observations of 10 new high-redshift Type Ia supernovae (SNe Ia) and the values of the cosmo logical p How fast the universe grows depends four high on the stuff inside it. We know the Garnavic Universe has matter in it (based on the samp the existence of us, bagels, and a fidence few other things). Through gravity, atic unce matter slows down the expansion. But

The wif the universe is not slowing down, it universe would imply there is some other dimary may exotic component ected by more exotic forms of energy. Preeminent among these is a possible energy of the vacuum (Ω_{Λ}) , Einstein's "cosmological con-

TRANSLATING SCIENTIFIC PAPERS


The idea came about two years ago when my mom mentioned that she was excited to read a recent paper of mine. The research was on a subtle systematic effect in cosmological surveys, a topic specific enough that I worried even people in my field would have difficulty understanding it. I wanted to explain the paper in a way that gave my mom a real idea of my work and what went into it.

The result was a doodle summary. I placed the PDF version of my paper in PowerPoint and annotated it with text, diagrams, cartoons, and more. I linked to the annotation on the paper's arXiv.org page and received a large, positive reception from other scientists. Several researchers have since made similar summaries of their papers.

The annotated-paper approach is helpful for describing research to colleagues, sharing the content of papers with undergraduates, and explaining to the public what goes into scientific research. It's also a clean way to visually communicate the most important ideas from a paper's plots and tables. I've found that general audiences are often surprised by how much work underlies a single result and how much of a paper scientists may devote to describing all the reasons they may be wrong.

The doodles in this feature annotate the ground-

APPEARING HALFWAY through the 30-page manuscript, this is the pivotal graph that demonstrates the universe's accelerating expansion. A doodle summary highlights a plot's takeaways while de-emphasizing the jargon and symbols. Axis labels are simplified, and helpful context is included.

It most closely matches a model of the universe with an expansion that will accelerate forever!

Turatto et al. 1996) indicated that large and real inhomogeIf you know how bright something really is, and how bright it looks, you can sont out its distance.

Like seeing headlights at night and guessing how ness in the 15 da far away the car is a good predictor of the SN Ia luminosity, with slowly declining supernovae nore luminous than those which fade far dlyl and if our of the survey. The calar Toold survey tambuse of carefully and if our survey. The calar Toold survey tambuse a systematic photographic sear for our of the road out of the road

THIS SET OF CARTOONS is a fun way to illustrate a basic principle for using supernovae at various distances to measure the universe's expansion.

We can break up the light of a supernova into its spectrum.

These plots show how much light is present at every wavelength for each of the IO new supernovae.

Supernovae have spectral fingerprints, all with predictable patterns of peaks and dips at particular wavelengths. By seeing how much these patterns are shifted in our observations, we can figure out the redshift of the source.

Rest Wavelength (Å)

DATA TABLES AND FIGURES are ideal places to explain the background science that underlies the research. In this example, annotations overlaying the spectra of several supernovae explain spectroscopy and how it is used to measure the redshift of cosmic objects.

breaking 1998 Astronomical Journal paper by Adam Riess and colleagues, who used observations of supernovae to make a compelling case that the expansion of the universe is accelerating. Combined with research by Saul Perlmutter and collaborators that was published in the Astrophysical Journal several months later, it is the most consequential result in modern cosmology, one that was recognized with the 2011 Nobel Prize in Physics.

The snippets illustrate some of what I did to summarize the paper by Riess and colleagues. I encourage readers to try to do something similar with their own research papers.

The annotations use the xkcd font, CC BY-NC 3.0, https://github.com/ipython/xkcd-font.

For the full annotation, visit https://physicstoday.org/doodle.

AS MANY RESEARCHERS do in their papers, Adam Riess and colleagues use a significant portion of their manuscript—in this case, 7 of their 30 pages—to address all the possible ways they may be wrong. A doodle summary simplifies each of those factors without glossing over them, like many popular-science articles do. For researchers summarizing their own work, it's a valuable opportunity to describe how much effort goes into producing a piece of peer-reviewed research.