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Nobel Prize hlghllghts neural networks

physics roots

The road to the modern
machine-learning marvels
was paved with ideas from
statistical mechanics and

collective phenomena.

“G arbage in, garbage out.” According

to the old adage from computer sci-

ence, what you get from a computer

is no better than what you give it. And it

would seem to imply that because com-

puters can’t think for themselves, they

can never do anything more sophisti-

cated than what they’ve been explicitly
instructed to.

But that last part appears to be no
longer true. Neural networks—computing
architectures, inspired by the human
brain, in which signals are passed among
nodes called artificial neurons—have, in
recent years, been producing wave after
wave of stunning results. (See, for exam-
ple, page 17 of this issue.) Individual
artificial neurons perform only the most
elementary of computations. But when
brought together in large enough num-
bers, and when fed on enough training
data, they acquire capabilities uncannily
reminiscent of human intelligence, seem-
ingly out of nowhere.

Physicists are no strangers to the idea
of unexpected phenomena emerging
from simpler building blocks. A few el-
ementary particles and the rules of their
interactions combine to yield almost
the whole of the visible world: super-
conductors, plasmas, and everything in
between. Why shouldn’t a physics ap-
proach to emergent complexity be ap-
plied to neural networks too?

Indeed, it was—and still is—as show-
cased by this year’s Nobel Prize in Phys-
ics, which goes to Princeton University’s
John Hopfield and the University of To-
ronto’s Geoffrey Hinton. Beginning in
the early 1980s, Hopfield laid the con-
ceptual foundations for physics-based
thinking about brain-inspired informa-
tion processing; Hinton was at the fore-
front of the decades-long effort to build

12 PHYSICS TODAY | DECEMBER 2024

ALISYIAINN NOLIONIYA/ILNYSYY LYW

on those ideas to develop the algorithms
used by neural-network models today.

Glassy memory

It was far from obvious, at first, that
neural networks would ever grow to be
so powerful. As recently as 2011, the
flashiest milestones in AI were being
achieved by another approach entirely.
IBM Watson, the computer that beat
Ken Jennings and Brad Rutter at Jeop-
ardy!, was not a neural network: It was
explicitly programmed with rules for
language processing, information re-
trieval, and logical reasoning. And many
researchers thought that was the way to
go to create practical Al machines.

In contrast, the early work on neural
networks was curiosity-driven research,
inspired more by real brains than by
computers and their applications. But the
nature of the interdisciplinary connection
was subtle. “The questions Hopfield ad-
dressed are not unrelated to things neuro-
scientists were worried about,” says
Princeton’s William Bialek. “But this isn't
about “application of physics to X’; rather,
it's about introducing a whole point of
view that just didn’t exist before.”

By the 1980s, neuroscientists had
known for decades that the brain is com-
posed of neurons, which are connected
to one another via synapses and alter-
nate between periods of high and low
electrical activity (colloquially, “firing”
and “not firing”), and they were study-
ing systems of a few neurons to under-
stand how one neuron’s firing affected

Geoffrey Hinton

those it was connected to. “Some thought
of neurons in terms of logic gates, like in
electronics,” says Stanford University’s
Jay McClelland.

In a landmark 1982 paper, Hopfield
took a different approach.! In physics,
he argued, many important properties
of large-scale systems are independent
of small-scale details. All materials con-
duct sound waves, for example, irrespec-
tive of exactly how their atoms or mole-
cules interact. Microscopic forces might
affect the speed of sound or other acous-
tic properties, but studying the forces
among three or four atoms reveals little
about how the concept of sound waves
emerges in the first place.

So he wrote down a model of a net-
work of neurons, with an eye more to-
ward computational and mathematical
simplicity than neurobiological realism.
The model, now known as a Hopfield
network, is sketched in figure 1. (The fig-
ure shows a five-neuron network for ease
of illustration; Hopfield was simulating
networks of 30 to 100 neurons.) Each
neuron can be in state 1, for firing, or state
0, for not firing. And each neuron was
connected to all the others via coupling
constants that could have any positive or
negative value, depending on whether
each synapse favors or disfavors the neu-
rons to both be firing at the same time.

That’s exactly the same form as a spin
glass, a famously thorny system from
condensed-matter physics. (See Puysics
Topay, December 2021, page 17.) Unlike a
ferromagnet, in which the couplings are all
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FIGURE 1. A HOPFIELD NETWORK, formally equivalent to a spin glass, functions as an associative memory: When presented with
a partially recalled state, it uses an energy-lowering algorithm to fill in the gaps. The memories are stored in the strengths of the
connections among the nodes. When John Hopfield showed that with the right combination of connection weights, the network
could store many memories simultaneously, he set the stage for physics-based thinking about neural networks. (Figure by Freddie
Pagani; rabbit photo by JM Ligero Loarte/Wikimedia Commons/CC BY 3.0.)

positive and the system has a clear ground
state with all its spins aligned, a spin glass
almost always lacks a state that satisfies
all its spins’ energetic preferences simul-
taneously. Its energy landscape is com-
plex, with many local energy minima.

Hopfield argued that the landscape
could serve as a memory, with each of
the energy-minimizing configurations
serving as a state to be remembered.
And he presented an elegant way of set-
ting the connection strengths—inspired
by what happens at real synapses—so
that the memory would store any de-
sired collection of states.

But the Hopfield network is funda-
mentally different from an ordinary com-
puter memory. In a computer, each item
of data to be stored is encoded as a string
of ones and zeros in a specific place, and
it’s recalled by going back to that place
and reading out the string. In a Hopfield
network, all the items are stored simulta-
neously in the coupling strengths of the
whole network. And they can be recalled
associatively, by giving the network a
starting point that shares just a few fea-
tures with one of the remembered states
and allowing it to relax to the nearest
energy minimum. More often than not,
it will recall the desired memory. (See
also the articles by Haim Sompolinsky,
Puysics Topay, December 1988, page 70,
and John Hopfield, Puysics Topay, Feb-
ruary 1994, page 40.)

Those are both things that happen in
real brains. “It was known experimen-
tally in higher animals that brain activity
was well spread out, and it involved

many neurons,” says Hopfield. And as-
sociative memory is something you've
directly experienced if you've ever re-
called a song you’'ve heard before after
hearing one random line.

Hopfield’s model was a vast simplifica-
tion of a real brain. Real neurons are in-
trinsically dynamic, not characterized by
static states, and real neuron connections
are not symmetric. But in a way, those
differences were features, not bugs: They
showed that collective, associative mem-
ory was an emergent large-scale phenom-
enon, robust against small-scale details.

Learning how to learn

“Not only is Hopfield a very good physi-
cist, but the Hopfield model is excellent
physics by itself,” says Leo van Hemmen,
of the Technical University of Munich.
Still, its 1982 formulation left many in-
triguing open questions. Hopfield had
focused on simulations to show how the
system relaxes to an energy minimum;
would the model admit a more robust
analytical treatment? How many states
could the model remember, and what
would happen if it was overloaded?
Were there better ways of setting the con-
nection strengths than the one Hopfield
proposed?

Those questions, and others, were
taken on by a flurry of physics-trained
researchers who were inspired by
Hopfield’s work and entered the neural-
network field over the 1980s. “Physicists
are versatile, curious, and arrogant—in a
positive way,” says Eytan Domany, of the
Weizmann Institute of Science in Israel.

“They’re willing to study thoroughly and
then tackle a problem they’ve never seen
before, if it’s interesting. And everyone is
excited about understanding the brain.”

Another part of the appeal was in
how Hopfield had taken a traditional
physics problem and turned it on its
head. “In most energy-landscape prob-
lems, you're given the microscopic inter-
actions, and you ask, What is the ground
state? What are the local minima? What
is the entire landscape?” says Haim
Sompolinsky, of the Hebrew University
of Jerusalem. “The 1982 paper did the
opposite. We start with the ground states
that we want: the memories. And we ask,
What are the microscopic interactions
that will support those as ground states?”

From there, it was a short conceptual
leap to ask, Whatif the coupling strengths
themselves can evolve on their own en-
ergy landscape? That is, instead of being
preprogrammed with parameters to en-
code specific memories, can the system
improve itself by learning?

Machine learning in neural networks
had been tried before. The perceptron—a
neural-network-like device that sorted im-
ages into simple categories, such as circles
and squares—dates back to the 1950s.
When provided with a series of training
images and a simple algorithm for updat-
ing its connections between neurons, it
could eventually learn to correctly classify
even images it hadn't seen before.

But the perceptron didnt always
work: With the way the network was
structured, sometimes there wasn’t any
way of setting the connection strengths
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FIGURE 2. A BOLTZMANN MACHINE extends the Hopfield network in two ways: It augments the network to include hidden
nodes (shown in the center of the network in gray) that aren’t involved in encoding the data, and it operates at a nonzero effective
temperature, so that the entire space of configurations can be characterized by a Boltzmann probability distribution. Geoffrey
Hinton and colleagues developed a way to train the Boltzmann machine as a generative model: When presented with several
inputs that all shared a common feature, it produced more items of the same type. (Figure by Freddie Pagani.)

to perform the desired classification.
“When that happened, you could iter-
ate forever, and the algorithm would
never converge,” says van Hemmen.
“That was a big shock.” Without a guid-
ing principle to chart a path forward,
the field had stalled.

Finding common ground

Hinton didn’t come to neural networks
from a background in physics. But his
collaborator Terrence Sejnowski—who’d
earned his PhD under Hopfield in 1978 —
did. Together, they extended the Hop-
field network into something they called
the Boltzmann machine, which vastly
extended the model’s capabilities by ex-
plicitly drawing on concepts from statis-
tical physics.?

In Hopfield’s 1982 simulations, he’d
effectively considered the spin-glass net-
work at zero temperature: He allowed
the system to evolve its state only in
ways that would lower its overall energy.
So whatever the starting state, it rolled
into a nearby local energy minimum and
stayed there.

“Terry and I immediately started
thinking about the stochastic version, with
nonzero temperature,” says Hinton. In-
stead of a deterministic energy-lowering
rule, they used a Monte Carlo algorithm
that allowed the system to occasionally
jump into a state of higher energy. Given
enough time, a stochastic simulation of
the network would explore the entire en-
ergy landscape, and it would settle into a
Boltzmann probability distribution, with
all the low-energy states—regardless of
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whether theyre local energy minima—
represented with high probability.

“And in 1983, we discovered a really
beautiful way to do learning,” Hinton
says. When the network was supplied
with training data, they iteratively up-
dated the connection strengths so that
the data states had high probability in
the Boltzmann distribution.> Moreover,
when the input data had something in
common—like the images of the nu-
meral 3 in figure 2—then other high-
probability states would share the same
common features.

The key ingredient for that kind of
commonality finding was augmenting
the network to include more nodes than
just the ones that encode the data. Those
hidden nodes, represented in gray in
figure 2, allow the system to capture
higher-level correlations among the data.

In principle, the Boltzmann machine
could be used for machine recognition
of handwriting or for distinguishing
normal from emergency conditions in a
facility such as a power plant. Unfortu-
nately, the Boltzmann machine’s learn-
ing algorithm is prohibitively slow for
most practical applications. It remained
a topic of academic research, but it didn’t
find much real-world use —until it made
a surprising reappearance years later.

How the networks work

Around the same time, Hinton was
working with cognitive scientist David
Rumelhart on another learning algo-
rithm, which would become the secret
sauce of almost all of today’s neural

networks: backpropagation.* The algo-
rithm was developed for a different kind
of network architecture, called a feed-
forward network, shown in figure 3. In
contrast to the Hopfield network and
Boltzmann machine, with their bidirec-
tional connections among nodes, signals
in a feedforward network flow in one
direction only: from a layer of input neu-
rons, through some number of hidden
layers, to the output. A similar architec-
ture had been used in the multilayer
perceptron.

Suppose you want to train a feed-
forward network to classify images. You
give it a picture of a rabbit, and you want
it to produce the output message “This
is a rabbit.” But something is wrong, and
instead you get the output “This is a
turtle.” How do you get things back on
track? The network might have dozens
or hundreds —or today, trillions—of inter-
node connections that contribute to the
output, each with its own numerical
weight. There’s a dizzying number of
ways to adjust them all to try to get the
output you want.

Backpropagation solves that problem
through gradient descent: First, you de-
fine an error function that quantifies how
far the output you got is from the output
you want. Then, calculate the partial de-
rivatives of the error function with re-
spect to each of the internodal weights—a
simple matter of repeatedly applying
calculus’s chain rule. Finally, use those
derivatives to adjust the weights in a way
that decreases the error.

It might take many repetitions to get



Write a haiku
about a rabbit

0.8

Soft ears in the grass,
mg Hopping through the morning dew,
Nature’s quiet joy.

Rabbit

FIGURE 3. A FEEDFORWARD NETWORK, trained by backpropagation, is the basic structure of the neural networks used today.
By passing numerical signals from an input layer through hidden layers to an output layer, feedforward networks perform functions
that include image classification and text generation. (Figure by Freddie Pagani; rabbit photo by JM Ligero Loarte/Wikimedia
Commons/CC BY 3.0; haiku generated by GPT-4, OpenAl, 22 October 2024.)

the error close enough to zero—and you'll
want to make sure that the network gives
the right output for many inputs, not just
one. But those basic steps are used to train
all kinds of networks, including proof-of-
concept image classifiers and large lan-
guage models, such as ChatGPT.

Gradient descent is intuitively ele-
gant, and it wasn't conceptually new.
“But several elements had to come to-
gether to get the backpropagation idea to
work,” says McClelland. “For one thing,
you can't take the derivative of some-
thing if it’s not differentiable.” Real neu-
rons operate more or less in discrete on
and off states, and the original Hopfield
network, Boltzmann machine, and per-
ceptron were all discrete models. For
backpropagation to work, it was neces-
sary to shift to a model in which the node
states can take a continuum of values.
But those continuous-valued networks
had already been introduced, including
in a 1984 paper by Hopfield.?

A second innovation had to wait for
longer. Backpropagation worked well
for networks with just a couple of layers.
But when the layer count approached
five or more—a trifling number by to-
day’s standards—some of the partial de-
rivatives were so small that the training
took an impractically long time.

In the early 2000s, Hinton found a
solution, and it involved his old Boltz-
mann machine—or rather, a so-called
restricted version of it, in which the only
connections are those between one hid-
den neuron and one visible (non-hidden)
neuron.® Restricted Boltzmann machines
(RBMs) are easy to computationally

model, because each group of neurons—
visible and hidden—could be updated
all at once, and the connection weights
could all be adjusted together in a single
step. Hinton’s idea was to isolate pairs
of successive layers in a feedforward
network, train them as if they were RBMs
to get the weights approximately right,
and then fine-tune the whole network
using backpropagation.

“It was kind of a hacky thing, but it
worked, and people got very excited,”
says Graham Taylor, of the University of
Guelph in Canada, who earned his PhD
under Hinton in 2009. “It was now pos-
sible to train networks with five, six,
seven layers. People called them ‘deep’
networks, and they started using the
term ‘deep learning.””

The RBM hack wasn't used for long.
Computing power was advancing so
quickly —particularly with the realization
that graphics processing units (GPUs)
were ideally suited to the computations
needed for neural networks—that within
a few years, it was possible to do back-
propagation on even larger networks
from a cold start, with no RBMs required.

“If RBM learning hadn’t happened,
would GPUs have come along anyway?”
asks Taylor. “That’s arguable. But the ex-
citement around RBMs changed the land-
scape: It led to the recruitment and train-
ing of new students and to new ways of
thinking. I think at the very least, it
wouldn’t have happened the same way.”

What's new is old

Today’s networks use hundreds or thou-
sands of layers, but their form is little

changed from what Hinton described. “I
learned about neural networks from
books from the 1980s,” says Bernhard
Mehlig, of the University of Gothenburg
in Sweden. “When I started teaching it, I
realized that not much is new. It’s essen-
tially the old stuff.” Mehlig notes that in
a textbook he wrote, published in 2021,
part 1 of 3 is about Hopfield, and part 2
is about Hinton.

Neural networks now influence a vast
number of human endeavors: They're
involved in data analysis, web searches,
and creating graphics. Are they intelli-
gent? It’s easy to dismiss the question
out of hand. “There have always been
lots of things that machines can do
better than humans,” says the University
of Maryland’s Sankar Das Sarma. “That
has nothing to do with becoming human.
ChatGPT is fabulously good at some
things, but at many others, it’s not even
as good as a two-year-old baby.”

An illustrative comparison is the vast
data gap between today’s neural net-
works and humans.” A literate 20-year-
old may have read and heard a few hun-
dred million words in life so far. Large
language models, in contrast, are trained
on hundreds of billions of words, a num-
ber that grows with each new release.
When you account for the fact that
ChatGPT has the advantage of a thousand
times as much life experience as you do,
its abilities may seem less like intelli-
gence. But perhaps it doesn’t matter if Al
fumbles with some tasks if it's good at the
right combination of others.

Hinton and Hopfield have both spo-
ken about the dangers of unchecked Al
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Among their arguments is the idea that
once machines become capable of break-
ing up goalsinto subgoals, they’ll quickly
deduce that they can make almost any
task easier for themselves by consolidat-
ing their own power. And because neu-
ral networks are often tasked with writ-
ing code for other computers, stopping
the damage is not as simple as pulling
the plug on a single machine.

“There are also imminent risks that
we're facing right now,” says Mehlig.
“There are computer-written texts and
fake images that are being used to trick
people and influence elections. I think
that by talking about computers taking
over the world, people take the immi-
nent dangers less seriously.”

What can physicists do?

Much of the unease stems from the fact
that so little is known about what neu-
ral networks are really doing: How do
billions of matrix multiplications add
up to the ability to find protein struc-
tures or write poetry? “People at the big
companies are more interested in pro-
ducing revenue, not understanding,”
says Das Sarma. “Understanding takes
longer. The job of theorists is to under-
stand phenomena, and this is a huge
physical phenomenon, waiting to be
understood by us. Physicists should be
interested in this.”

“It’s hard not to be excited by what’s
going on, and it’s hard not to notice that
we don't understand,” says Bialek. “If
you want to say that things are emergent,
what'’s the order parameter, and what is
it that’s emerged? Physics has a way of

making that question more precise. Will
that approach yield insight? We'll see.”

For now, the biggest questions are
still overwhelming. “If there were some-
thing obvious that came to mind, there
would be a horde of people trying to
solve it,” says Hopfield. “But there isn't
a horde of people working on this, be-
cause nobody knows where to start.”

But a few smaller-scale questions are
more tractable. For example, why does
backpropagation so reliably reduce the
network error to near zero, rather than
getting stuck in high-lying local minima
like the Hopfield network does? “There
was a beautiful piece of work on this a
few years ago by Surya Ganguli at Stan-
ford,” says Sara Solla, of Northwestern
University. “He found that most high-
lying minima are really saddle points:
It’s a minimum in many dimensions, but
there’s always one in which it’s not. So
if you keep kicking, you eventually find
your way out.”

When physics-trained researchers
work on problems like that, are they still
doing physics? Or have they left physics
behind for something else? If “physics”
is defined as the study of the natural,
physical world, that would arguably ex-
clude artificial neural networks, which
by now are wholly human-made abstrac-
tions with little resemblance to biological
neurons. “We don’t build airplanes that
flap their wings,” says Solla. “And back-
propagation is a totally unrealistic mecha-
nism in a real brain. The engineering goal
is to make a machine that works. Nature
gives us some intuition, but the best solu-
tion is not necessarily to copy it.”

But must physics be defined solely by
its subject matter? “In multidisciplinary
fields, what makes the difference be-
tween disciplines—mathematics versus
computer science versus physics—is
their methods and mindsets,” says
Princeton’s Francesca Mignacco. “They’re
complementary but different. Neural-
network models are so complicated that
it's hard to achieve rigorous mathemati-
cal descriptions. But statistical physics
has precisely the tools to tackle the com-
plexity of high-dimensional systems.
Personally, I've never stopped asking
questions just because they might or
might not be physics.”

“Physics is limited only by the ingenu-
ity of people applying physical ways of
thinking to systems in the real world,” says
Hopfield. “You can have a narrow view
of that, or you can welcome more applied
physics. I'm one of the welcomers.”

Johanna Miller
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