
G arbage in, garbage out.” According 
to the old adage from computer sci-
ence, what you get from a computer 

is no better than what you give it. And it 
would seem to imply that because com-
puters can’t think for themselves, they 
can never do anything more sophisti-
cated than what they’ve been explicitly 
instructed to.

But that last part appears to be no 
 longer true. Neural networks— computing 
architectures, inspired by the human 
brain, in which signals are passed among 
nodes called artificial neurons—have, in 
recent years, been producing wave after 
wave of stunning results. (See, for exam-
ple, page 17 of this issue.) Individual 
artificial neurons perform only the most 
elementary of computations. But when 
brought together in large enough num-
bers, and when fed on enough training 
data, they acquire capabilities uncannily 
reminiscent of human intelligence, seem-
ingly out of nowhere.

Physicists are no strangers to the idea 
of unexpected phenomena emerging 
from simpler building blocks. A few el-
ementary particles and the rules of their 
interactions combine to yield almost 
the whole of the visible world: super-
conductors, plasmas, and everything in 
between. Why shouldn’t a physics ap-
proach to emergent complexity be ap-
plied to neural networks too?

Indeed, it was—and still is—as show-
cased by this year’s Nobel Prize in Phys-
ics, which goes to Princeton University’s 
John Hopfield and the University of To-
ronto’s Geoffrey Hinton. Beginning in 
the early 1980s, Hopfield laid the con-
ceptual foundations for physics-based 
thinking about brain-inspired informa-
tion processing; Hinton was at the fore-
front of the decades-long effort to build 

on those ideas to develop the algorithms 
used by neural-network models today.

Glassy memory
It was far from obvious, at first, that 
neural networks would ever grow to be 
so powerful. As recently as 2011, the 
flashiest milestones in AI were being 
achieved by another approach entirely. 
IBM Watson, the computer that beat 
Ken Jennings and Brad Rutter at Jeop-
ardy!, was not a neural network: It was 
explicitly programmed with rules for 
language processing, information re-
trieval, and logical reasoning. And many 
researchers thought that was the way to 
go to create practical AI machines.

In contrast, the early work on neural 
networks was curiosity-driven research, 
inspired more by real brains than by 
computers and their applications. But the 
nature of the interdisciplinary connection 
was subtle. “The questions Hopfield ad-
dressed are not unrelated to things neuro-
scientists were worried about,” says 
Princeton’s William Bialek. “But this isn’t 
about ‘application of physics to X’; rather, 
it’s about introducing a whole point of 
view that just didn’t exist before.”

By the 1980s, neuroscientists had 
known for decades that the brain is com-
posed of neurons, which are connected 
to one another via synapses and alter-
nate between periods of high and low 
electrical activity (colloquially, “firing” 
and “not firing”), and they were study-
ing systems of a few neurons to under-
stand how one neuron’s firing affected 

those it was connected to. “Some thought 
of neurons in terms of logic gates, like in 
electronics,” says Stanford University’s 
Jay McClelland. 

In a landmark 1982 paper, Hopfield 
took a different approach.1 In physics, 
he argued, many important properties 
of large-scale systems are independent 
of small-scale details. All materials con-
duct sound waves, for example, irrespec-
tive of exactly how their atoms or mole-
cules interact. Microscopic forces might 
affect the speed of sound or other acous-
tic properties, but studying the forces 
among three or four atoms reveals little 
about how the concept of sound waves 
emerges in the first place.

So he wrote down a model of a net-
work of neurons, with an eye more to-
ward computational and mathematical 
simplicity than neurobiological realism. 
The model, now known as a Hopfield 
network, is sketched in figure 1. (The fig-
ure shows a five-neuron network for ease 
of illustration; Hopfield was simulating 
networks of 30 to 100 neurons.) Each 
neuron can be in state 1, for firing, or state 
0, for not firing. And each neuron was 
connected to all the others via coupling 
constants that could have any positive or 
negative value, depending on whether 
each synapse favors or disfavors the neu-
rons to both be firing at the same time.

That’s exactly the same form as a spin 
glass, a famously thorny system from 
condensed-matter physics. (See Physics 
Today, December 2021, page 17.) Unlike a 
ferromagnet, in which the couplings are all 
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The road to the modern 
machine-learning marvels 
was paved with ideas from 
statistical mechanics and 
collective phenomena.

Nobel Prize highlights neural networks’ 
physics roots
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positive and the system has a clear ground 
state with all its spins aligned, a spin glass 
almost always lacks a state that satisfies 
all its spins’ energetic preferences simul-
taneously. Its energy landscape is com-
plex, with many local energy minima.

Hopfield argued that the landscape 
could serve as a memory, with each of 
the energy-minimizing configurations 
serving as a state to be remembered. 
And he presented an elegant way of set-
ting the connection strengths—inspired 
by what happens at real synapses—so 
that the memory would store any de-
sired collection of states.

But the Hopfield network is funda-
mentally different from an ordinary com-
puter memory. In a computer, each item 
of data to be stored is encoded as a string 
of ones and zeros in a specific place, and 
it’s recalled by going back to that place 
and reading out the string. In a Hopfield 
network, all the items are stored simulta-
neously in the coupling strengths of the 
whole network. And they can be recalled 
associatively, by giving the network a 
starting point that shares just a few fea-
tures with one of the remembered states 
and allowing it to relax to the nearest 
energy minimum. More often than not, 
it will recall the desired memory. (See 
also the articles by Haim Sompolinsky, 
Physics Today, December 1988, page 70, 
and John Hopfield, Physics Today, Feb-
ruary 1994, page 40.)

Those are both things that happen in 
real brains. “It was known experimen-
tally in higher animals that brain activity 
was well spread out, and it involved 

many neurons,” says Hopfield. And as-
sociative memory is something you’ve 
directly experienced if you’ve ever re-
called a song you’ve heard before after 
hearing one random line.

Hopfield’s model was a vast simplifica-
tion of a real brain. Real neurons are in-
trinsically dynamic, not characterized by 
static states, and real neuron connections 
are not symmetric. But in a way, those 
differences were features, not bugs: They 
showed that collective, associative mem-
ory was an emergent large-scale phenom-
enon, robust against small-scale details.

Learning how to learn
“Not only is Hopfield a very good physi
cist, but the Hopfield model is excellent 
physics by itself,” says Leo van Hemmen, 
of the Technical University of Munich. 
Still, its 1982 formulation left many in-
triguing open questions. Hopfield had 
focused on simulations to show how the 
system relaxes to an energy minimum; 
would the model admit a more robust 
analytical treatment? How many states 
could the model remember, and what 
would happen if it was overloaded? 
Were there better ways of setting the con-
nection strengths than the one Hopfield 
proposed?

Those questions, and others, were 
taken on by a flurry of physics-trained 
researchers who were inspired by 
 Hopfield’s work and entered the neural-
network field over the 1980s. “Physicists 
are versatile, curious, and arrogant—in a 
positive way,” says Eytan Domany, of the 
Weizmann Institute of Science in Israel. 

“They’re willing to study thoroughly and 
then tackle a problem they’ve never seen 
before, if it’s interesting. And everyone is 
excited about understanding the brain.”

Another part of the appeal was in 
how Hopfield had taken a traditional 
physics problem and turned it on its 
head. “In most energy-landscape prob-
lems, you’re given the microscopic inter-
actions, and you ask, What is the ground 
state? What are the local minima? What 
is the entire landscape?” says Haim 
Sompolinsky, of the Hebrew University 
of Jerusalem. “The 1982 paper did the 
opposite. We start with the ground states 
that we want: the memories. And we ask, 
What are the microscopic interactions 
that will support those as ground states?”

From there, it was a short conceptual 
leap to ask, What if the coupling strengths 
themselves can evolve on their own en-
ergy landscape? That is, instead of being 
preprogrammed with parameters to en-
code specific memories, can the system 
improve itself by learning?

Machine learning in neural networks 
had been tried before. The perceptron—a 
neural-network-like device that sorted im-
ages into simple categories, such as circles 
and squares—dates back to the 1950s. 
When provided with a series of training 
images and a simple algorithm for updat-
ing its connections between neurons, it 
could eventually learn to correctly classify 
even images it hadn’t seen before.

But the perceptron didn’t always 
work: With the way the network was 
structured, sometimes there wasn’t any 
way of setting the connection strengths 
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FIGURE 1. A HOPFIELD NETWORK, formally equivalent to a spin glass, functions as an associative memory: When presented with 
a partially recalled state, it uses an energy-lowering algorithm to fill in the gaps. The memories are stored in the strengths of the 
connections among the nodes. When John Hopfield showed that with the right combination of connection weights, the network 
could store many memories simultaneously, he set the stage for physics-based thinking about neural networks. (Figure by Freddie 
Pagani; rabbit photo by JM Ligero Loarte/Wikimedia Commons/CC BY 3.0.)
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to perform the desired classification. 
“When that happened, you could iter-
ate forever, and the algorithm would 
never converge,” says van Hemmen. 
“That was a big shock.” Without a guid-
ing principle to chart a path forward, 
the field had stalled.

Finding common ground
Hinton didn’t come to neural networks 
from a background in physics. But his 
collaborator Terrence Sejnowski—who’d 
earned his PhD under Hopfield in 1978—
did. Together, they extended the Hop-
field network into something they called 
the Boltzmann machine, which vastly 
extended the model’s capabilities by ex-
plicitly drawing on concepts from statis-
tical physics.2

In Hopfield’s 1982 simulations, he’d 
effectively considered the spin-glass net-
work at zero temperature: He allowed 
the system to evolve its state only in 
ways that would lower its overall energy. 
So whatever the starting state, it rolled 
into a nearby local energy minimum and 
stayed there.

“Terry and I immediately started 
thinking about the stochastic version, with 
nonzero temperature,” says Hinton. In-
stead of a deterministic energy-lowering 
rule, they used a Monte Carlo algorithm 
that allowed the system to occasionally 
jump into a state of higher energy. Given 
enough time, a stochastic simulation of 
the network would explore the entire en-
ergy landscape, and it would settle into a 
Boltzmann probability distribution, with 
all the low-energy states— regardless of 

whether they’re local energy minima—
represented with high probability.

“And in 1983, we discovered a really 
beautiful way to do learning,” Hinton 
says. When the network was supplied 
with training data, they iteratively up-
dated the connection strengths so that 
the data states had high probability in 
the Boltzmann distribution.3 Moreover, 
when the input data had something in 
common—like the images of the nu-
meral 3 in figure 2—then other high-
probability states would share the same 
common features.

The key ingredient for that kind of 
commonality finding was augmenting 
the network to include more nodes than 
just the ones that encode the data. Those 
hidden nodes, represented in gray in 
figure 2, allow the system to capture 
higher-level correlations among the data. 

In principle, the Boltzmann machine 
could be used for machine recognition 
of handwriting or for distinguishing 
normal from emergency conditions in a 
facility such as a power plant. Unfortu-
nately, the Boltzmann machine’s learn-
ing algorithm is prohibitively slow for 
most practical applications. It remained 
a topic of academic research, but it didn’t 
find much real-world use—until it made 
a surprising reappearance years later.

How the networks work
Around the same time, Hinton was 
working with cognitive scientist David 
Rumelhart on another learning algo-
rithm, which would become the secret 
sauce of almost all of today’s neural 

networks: backpropagation.4 The algo-
rithm was developed for a different kind 
of network architecture, called a feed
forward network, shown in figure 3. In 
contrast to the Hopfield network and 
Boltzmann machine, with their bidirec-
tional connections among nodes, signals 
in a feedforward network flow in one 
direction only: from a layer of input neu-
rons, through some number of hidden 
layers, to the output. A similar architec-
ture had been used in the multilayer 
perceptron.

Suppose you want to train a feed
forward network to classify images. You 
give it a picture of a rabbit, and you want 
it to produce the output message “This 
is a rabbit.” But something is wrong, and 
instead you get the output “This is a 
turtle.” How do you get things back on 
track? The network might have dozens 
or hundreds—or today, trillions—of inter
node connections that contribute to the 
output, each with its own numerical 
weight. There’s a dizzying number of 
ways to adjust them all to try to get the 
output you want.

Backpropagation solves that problem 
through gradient descent: First, you de-
fine an error function that quantifies how 
far the output you got is from the output 
you want. Then, calculate the partial de-
rivatives of the error function with re-
spect to each of the internodal weights—a 
simple matter of repeatedly applying 
calculus’s chain rule. Finally, use those 
derivatives to adjust the weights in a way 
that decreases the error.

It might take many repetitions to get 
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FIGURE 2. A BOLTZMANN MACHINE extends the Hopfield network in two ways: It augments the network to include hidden 
nodes (shown in the center of the network in gray) that aren’t involved in encoding the data, and it operates at a nonzero effective 
temperature, so that the entire space of configurations can be characterized by a Boltzmann probability distribution. Geoffrey 
Hinton and colleagues developed a way to train the Boltzmann machine as a generative model: When presented with several 
inputs that all shared a common feature, it produced more items of the same type. (Figure by Freddie Pagani.)
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the error close enough to zero—and you’ll 
want to make sure that the network gives 
the right output for many inputs, not just 
one. But those basic steps are used to train 
all kinds of networks, including proof-of-
concept image classifiers and large lan-
guage models, such as ChatGPT.

Gradient descent is intuitively ele-
gant, and it wasn’t conceptually new. 
“But several elements had to come to-
gether to get the backpropagation idea to 
work,” says McClelland. “For one thing, 
you can’t take the derivative of some-
thing if it’s not differentiable.” Real neu-
rons operate more or less in discrete on 
and off states, and the original Hopfield 
network, Boltzmann machine, and per-
ceptron were all discrete models. For 
backpropagation to work, it was neces-
sary to shift to a model in which the node 
states can take a continuum of values. 
But those continuous-valued networks 
had already been introduced, including 
in a 1984 paper by Hopfield.5

A second innovation had to wait for 
longer. Backpropagation worked well 
for networks with just a couple of layers. 
But when the layer count approached 
five or more—a trifling number by to-
day’s standards—some of the partial de-
rivatives were so small that the training 
took an impractically long time.

In the early 2000s, Hinton found a 
solution, and it involved his old Boltz-
mann machine—or rather, a so-called 
restricted version of it, in which the only 
connections are those between one hid-
den neuron and one visible (non-hidden) 
neuron.6 Restricted Boltzmann machines 
(RBMs) are easy to computationally 

model, because each group of neurons—
visible and hidden—could be updated 
all at once, and the connection weights 
could all be adjusted together in a single 
step. Hinton’s idea was to isolate pairs 
of successive layers in a feedforward 
network, train them as if they were RBMs 
to get the weights approximately right, 
and then fine-tune the whole network 
using backpropagation.

“It was kind of a hacky thing, but it 
worked, and people got very excited,” 
says Graham Taylor, of the University of 
Guelph in Canada, who earned his PhD 
under Hinton in 2009. “It was now pos-
sible to train networks with five, six, 
seven layers. People called them ‘deep’ 
networks, and they started using the 
term ‘deep learning.’”

The RBM hack wasn’t used for long. 
Computing power was advancing so 
quickly—particularly with the realization 
that graphics processing units (GPUs) 
were ideally suited to the computations 
needed for neural networks—that within 
a few years, it was possible to do back
propagation on even larger networks 
from a cold start, with no RBMs required.

“If RBM learning hadn’t happened, 
would GPUs have come along anyway?” 
asks Taylor. “That’s arguable. But the ex-
citement around RBMs changed the land-
scape: It led to the recruitment and train-
ing of new students and to new ways of 
thinking. I think at the very least, it 
wouldn’t have happened the same way.”

What’s new is old
Today’s networks use hundreds or thou-
sands of layers, but their form is little 

changed from what Hinton described. “I 
learned about neural networks from 
books from the 1980s,” says Bernhard 
Mehlig, of the University of Gothenburg 
in Sweden. “When I started teaching it, I 
realized that not much is new. It’s essen-
tially the old stuff.” Mehlig notes that in 
a textbook he wrote, published in 2021, 
part 1 of 3 is about Hopfield, and part 2 
is about Hinton.

Neural networks now influence a vast 
number of human endeavors: They’re 
involved in data analysis, web searches, 
and creating graphics. Are they intelli-
gent? It’s easy to dismiss the question 
out of hand. “There have always been 
lots of things that machines can do 
better than humans,” says the University 
of Maryland’s Sankar Das Sarma. “That 
has nothing to do with becoming human. 
ChatGPT is fabulously good at some 
things, but at many others, it’s not even 
as good as a two-year-old baby.”

An illustrative comparison is the vast 
data gap between today’s neural net-
works and humans.7 A literate 20-year-
old may have read and heard a few hun-
dred million words in life so far. Large 
language models, in contrast, are trained 
on hundreds of billions of words, a num-
ber that grows with each new release. 
When you account for the fact that 
ChatGPT has the advantage of a thousand 
times as much life experience as you do, 
its abilities may seem less like intelli-
gence. But perhaps it doesn’t matter if AI 
fumbles with some tasks if it’s good at the 
right combination of others. 

Hinton and Hopfield have both spo-
ken about the dangers of unchecked AI. 

Rabbit

Write a haiku
about a rabbit

Soft ears in the grass,
Hopping through the morning dew,
Nature’s quiet joy.
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FIGURE 3. A FEEDFORWARD NETWORK, trained by backpropagation, is the basic structure of the neural networks used today. 
By passing numerical signals from an input layer through hidden layers to an output layer, feedforward networks perform functions 
that include image classification and text generation. (Figure by Freddie Pagani; rabbit photo by JM Ligero Loarte/Wikimedia 
Commons/CC BY 3.0; haiku generated by GPT-4, OpenAI, 22 October 2024.)
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Among their arguments is the idea that 
once machines become capable of break-
ing up goals into subgoals, they’ll quickly 
deduce that they can make almost any 
task easier for themselves by consolidat-
ing their own power. And because neu-
ral networks are often tasked with writ-
ing code for other computers, stopping 
the damage is not as simple as pulling 
the plug on a single machine.

“There are also imminent risks that 
we’re facing right now,” says Mehlig. 
“There are computer-written texts and 
fake images that are being used to trick 
people and influence elections. I think 
that by talking about computers taking 
over the world, people take the immi-
nent dangers less seriously.”

What can physicists do?
Much of the unease stems from the fact 
that so little is known about what neu-
ral networks are really doing: How do 
billions of matrix multiplications add 
up to the ability to find protein struc-
tures or write poetry? “People at the big 
companies are more interested in pro-
ducing revenue, not understanding,” 
says Das Sarma. “Understanding takes 
longer. The job of theorists is to under-
stand phenomena, and this is a huge 
physical phenomenon, waiting to be 
understood by us. Physicists should be 
interested in this.”

“It’s hard not to be excited by what’s 
going on, and it’s hard not to notice that 
we don’t understand,” says Bialek. “If 
you want to say that things are emergent, 
what’s the order parameter, and what is 
it that’s emerged? Physics has a way of 

making that question more precise. Will 
that approach yield insight? We’ll see.”

For now, the biggest questions are 
still overwhelming. “If there were some-
thing obvious that came to mind, there 
would be a horde of people trying to 
solve it,” says Hopfield. “But there isn’t 
a horde of people working on this, be-
cause nobody knows where to start.”

But a few smaller-scale questions are 
more tractable. For example, why does 
backpropagation so reliably reduce the 
network error to near zero, rather than 
getting stuck in high-lying local minima 
like the Hopfield network does? “There 
was a beautiful piece of work on this a 
few years ago by Surya Ganguli at Stan-
ford,” says Sara Solla, of Northwestern 
University. “He found that most high- 
lying minima are really saddle points: 
It’s a minimum in many dimensions, but 
there’s always one in which it’s not. So 
if you keep kicking, you eventually find 
your way out.”

When physics-trained researchers 
work on problems like that, are they still 
doing physics? Or have they left physics 
behind for something else? If “physics” 
is defined as the study of the natural, 
physical world, that would arguably ex-
clude artificial neural networks, which 
by now are wholly human-made abstrac-
tions with little resemblance to biological 
neurons. “We don’t build airplanes that 
flap their wings,” says Solla. “And back-
propagation is a totally unrealistic mecha-
nism in a real brain. The engineering goal 
is to make a machine that works. Nature 
gives us some intuition, but the best solu-
tion is not necessarily to copy it.”

But must physics be defined solely by 
its subject matter? “In multidisciplinary 
fields, what makes the difference be-
tween disciplines—mathematics versus 
computer science versus physics— is 
their methods and mindsets,” says 
Princeton’s Francesca Mignacco. “They’re 
complementary but different. Neural- 
network models are so complicated that 
it’s hard to achieve rigorous mathemati-
cal descriptions. But statistical physics 
has precisely the tools to tackle the com-
plexity of high-dimensional systems. 
Personally, I’ve never stopped asking 
questions just because they might or 
might not be physics.”

“Physics is limited only by the ingenu-
ity of people applying physical ways of 
thinking to systems in the real world,” says 
Hopfield. “You can have a narrow view 
of that, or you can welcome more applied 
physics. I’m one of the welcomers.”

Johanna Miller
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