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In numerous physical systems, from tossed

coins to black holes, the complexity arising

from the coexistence of different outcomes
limits our ability to make predictions.
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MULTISTABILITY AND UNPREDICTABILITY

ecision making can be tough. Transferring the choice to an
unbiased authority, like a coin or a die, may help to relieve
the pressure. Indeed, for just a few dollars, you can buy a
decision-making toy (see figure 1), consisting of a rigid rod
and three magnets typically labeled with different outcomes:
yes, no, and maybe. Just pull the rod away from equilibrium and
let it swing erratically until it points to the answer. The whimsical

pendulum makes the choice for you.

Nevertheless, issues arise when you apply a bit of physical
reasoning. The equations of motion of such a magnetic pen-
dulum can be easily derived through consideration of the
attractive force between the magnet and the rod.! Given the
initial conditions, those deterministic equations will pre-
cisely predict where the pendulum will end up. Therefore,
you are actually the one making the decision, on the basis of
your particular choice of initial conditions! In fact, you could
place the rod very close to your secretly desired outcome, but
that feels too much like cheating. So how much control do
you really have over the final outcome?

It is a fun mathematical problem to consider, but the prin-
ciples can be applied to more than just toys. Any system with
multiple stable outcomes that are determined by the initial
conditions is known as a multistable system. Such systems
have historically been modeled by nonlinear equations of
motion and solved with numerical methods. Yet even small

Fractal dimension -

errors in the initial conditions—due, perhaps, to finite numeri-
cal precision—can lead to significantly different predictions
in chaotic systems. Statistics textbooks often use rolling dice
or flipping coins as examples of randomness for that reason:
Although in principle their motion can be described by clas-
sical mechanics,” the precise initial conditions affect the final
stable outcome.

Multistability is found in many areas of physics, ranging
from the quantum world to general relativity, spanning
basic probability and complex atmospheric models. Indeed,
the inherent nonlinearities of Albert Einstein’s field equa-
tions often lead to multistable situations.> For example,
when two black holes orbit each other, the path of light
around them is complicated by the competing gravitational
wells and is difficult to predict. As illustrated in figure 2,
photons face three possible outcomes in that scenario: being
absorbed by black hole one, being absorbed by black hole

The concept of dimension is more complex than what is taught
in school. In fact, dimension can be calculated using a construc-
tive approach called the box-counting method. It involves
overlaying a grid of boxes of side length € on a set of interest
and counting the number of boxes N(¢) that contain some part
of the set. The process is repeated with a series of decreasing
values of €. The value of N(g) is expected to increase as € de-
creases. In fact, N(g) is proportional to 9 for small &, where d is
the box-counting—that is, fractal—dimension of the set.

For simple Euclidean sets like line segments and disks,
the box-counting method may seem unnecessary because
their dimensions are already known (1 for a segment, 2 for
a disk). For more-complex geometric objects, such as frac-
tals, the method becomes extremely useful.

Fractals are geometrically complex sets that have a
noninteger dimension. An example of a fractal object is the
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boundary between Hudson Bay and Atlantic Ocean drain-
age basins. The draining of different geographic positions
into distinct basins resembles the sensitive dependence of
outcomes on initial conditions in a dynamical system.

This series of maps illustrates the application of the
box-counting algorithm to the basin boundary (red). Each
time we double the resolution, the number of boxes (gray)
covering the curve increases. Continuing the process to very
small values of €, we can find a scaling law in which the
exponent gives the fractal dimension of the curve.

In general, fractals have a fractal dimension greater than
their topological dimension (1 for a line) but smaller than
the dimension of the space in which they are embedded (2
for a surface). Multistable systems often present basins of
attraction with fractal boundaries, which have fundamental
consequences for the system’s predictability.
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FIGURE 1. A DECISION-MAKING PENDULUM TOY has three
possible outcomes: yes, no, and maybe. The magnet in the pendulum
is most likely to stop right above one of the three corresponding
magnets. The complex interplay between the initial conditions and
the multiple ending positions makes the pendulum a multistable
system. The final answer given by the pendulum may seem random,
but the system can be modeled by three basins of attraction
(colored), each of which represents a different answer. Knowledge of
the initial release point will inform where the resting point will be.

two, or escaping. Although photons around binary black
holes differ significantly from magnetic pendulums, the two
systems share several defining features.

Multistable systems pop up in other scientific disciplines
too. The genetic toggle switch is a gene-regulation mecha-
nism that tends to the expressed or silenced state, depending
on the initial concentrations of proteins.* Such simple motifs
allow for the construction of complex regulatory networks.
The analysis of the system’s multistability may lead to a better
understanding of gene expression.

Asymptotic states are not limited to steady states. Com-
plex scenarios can include periodic or even chaotic orbits.
For instance, the multiple stable solutions of a swinging
bell® are various modes of oscillation. And figure 3 illus-
trates the pulsating modes of a modulated laser, which de-
pend on the initial conditions.® In general, if any character-
istics allow us to distinguish between different asymptotic
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states, then we can and apply the theoretical framework of
multistability.”

Fractal basins of attraction

One approach to investigating the behavior of multistable
systems is building a map connecting initial conditions to
their final outcome. Such a map is known as the basins of
attraction. In figure 1, for example, the decision-making
pendulum will come to rest above the yellow answer if it is
released from the yellow basin of attraction. The term is
borrowed from hydrology, in which a river basin is the area
of land where rainfall ultimately gathers in a particular
body of water. In nonlinear systems, the inherent unpredict-
ability often results in intricate, sometimes even fractal,
basin shapes. (Various basins of attraction adorn this
article.)

When a basin of attraction has a fractal boundary, common
intuition regarding outcome predictability is useless.® That is
what allows a system like the decision-making pendulum to
appear random. In a system with smooth basin boundaries, an
enhancement in the precision of initial conditions by a factor of
10 yields a corresponding improvement in the overall predict-
ability of the system. For fractal basins, increasing the precision
10-fold may result in only a two- or threefold improvement in
predictions, or in extreme cases, no improvement at all. That

scenario recurs at every scale because of the self-repeating
nature of fractals.

Fractals are widely recognized for their complex structure
across all scales and their noninteger dimensions (see the box
on page 46). The conventional topological dimension can be
understood as the number of coordinates required to deter-
mine a point within an object: One coordinate is adequate for
defining a position on a curve, two coordinates suffice for a
point residing on a surface, and so forth. The fractal dimen-
sion generalizes the concept and offers insight into how ex-
tensively an object occupies space. For instance, a plane curve
with a fractal dimension of 1.53 occupies more space than a
line but less than a surface. The number is a proxy to describe
how close we are to those limiting cases.

Nonetheless, the peculiarities of fractal boundaries extend
beyond self-similarity and noninteger dimensions. They are
just the tip of the iceberg, since the array of fractal basins
encompasses extraordinary phenomena with fundamental
implications for predictability.

Cataloging unpredictability

Typically, boundaries divide two regions, as a border between
countries does. Occasionally, isolated points separate more than
two regions—for example, Four Corners marks the boundary
point between Arizona, Utah, Colorado, and New Mexico.

FIGURE 2. BINARY BLACK HOLES, like the ones shown in the simulation (a), form a multistable system. (Courtesy of the Simulating
eXtreme Spacetimes project.) They can be represented by different basins (b), illustrated here as a photon in the vicinity of such a system
with three possible end states: trapped by the first black hole (blue), trapped by the second black hole (green), or escaping both. In narrow
regions known as eyebrows, the influence of the farther black hole is stronger than the closer one. Some models predict a fractal hierarchy

of eyebrows, which adds complexity to the prediction.
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FIGURE 3. A MODULATED LASER DEMONSTRATES MULTISTABILITY when initial conditions of the setup are changed.® In the top
illustration, the initial conditions cause the output power (red) to feature large pulses at a third of the frequency of the modulation signal
(blue). In the bottom illustration, the output power and modulation signal have the same oscillation frequency.

Points like that have a higher level of unpredictability, and a
deviation from the exact boundary point can have more than
two possible outcomes: For example, someone at Four Corners
who gets pushed down could end up in any of the four states.
What happens when a boundary is composed entirely of such
points? Although such a boundary may seem implausible,
fractal objects often challenge conventional understanding.

In the early 20th century, Japanese topologist Takeo Wada
proposed a method for creating such a mind-boggling struc-
ture: three connected sets with a common boundary. Wada
basins, named after him, refer to three or more fractal basins
separated by a single boundary. That topological property is
not just a fanciful oddity; Wada basins are ubiquitous even
in simple systems, such as a damped pendulum subjected to
continuous forcing.®

Wada basins are not the basins with the most unpredict-
ability. Some fractal curves, such as Peano curves and Hilbert
curves, can fill the space. A boundary occupying the whole
space means that the slightest uncertainty will lead to an un-
known outcome. Despite being deterministic and regardless of
how much the precision is improved, the system will always be
unpredictable. Scenarios like that are modeled by what are
known as riddled basins. In a way, riddled basins can be
considered a bridge between determinism and randomness. In

addition to Wada and riddled basins, multistable systems give
rise to many more peculiar species, including sporadically
fractal basins, intermingled basins, and basins with tentacles.’
Usually, one of the first steps in analyzing a dynamic pro-
cess involves allowing the state to evolve until an asymptotic
behavior is recognized. A decision-making pendulum can still
be moving slightly when it becomes clear which marked mag-
net the pendulum will stop above. Trials with different initial
conditions may uncover alternative outcomes. Nonetheless, in
some systems, that process is far from trivial, since the basins
of the system can be hidden.!” That situation arises when the
basins are located away from their corresponding outcomes
and there are no transient processes leading to them. The de-
tection of such elusive basins requires special procedures.
Basins located close to their corresponding attractor can
also be problematic when those attractors are found every-
where. Extreme multistability' can arise when conservative
chaos meets small dissipation; it leads to an overwhelming
quantity of different attractors. Indeed, an arbitrarily large
number of attractors can arise in that kind of situation. Still,
manipulation of the system allows for custom-made sce-
narios of multistability. Two peculiar examples of such are
megastability’? and matryoshka multistability,”® in which
attractors are nested and form an onion-like structure.
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Furthermore, changing the parameters of the object of
inquiry sometimes gives birth to two possible outcomes, an
event called bifurcation. The same system may present a
huge variety of situations depending on its precise para-
meters. The rich diversity of basins and associated phenom-
ena are why creating tools to understand their unpredictabil-
ity and classify them is necessary.

The multistability toolkit

The most straightforward method to quantify the unpredict-
ability associated with basins is measuring their relative vol-
ume. Consider a loaded die for which the basin of one face
occupies a volume 20 times as great as the volume of all the
other faces combined. Clearly, a die will land with the biased
face up most of the time. That simple measure, known as
basin stability,'* has been successfully applied to the charac-
terization of multistable networks and high-dimensional
systems, such as atmospheric models.

But basins are much more than just their size. Equivalent
basin volumes in two systems do not necessarily imply the
same predictability for both. Not only does the basin volume
matter, but its morphology does also. For example, a bistable
system with symmetric basins separated by a smooth bound-
ary (imagine a two-by-two chessboard) and a system with
riddled boundaries (imagine TV static) can present identical
volumes. Even though the basin stability is the same in both
cases, the situations are very different. The basin entropy,'® a
recently developed tool, incorporates both aspects to provide
a quantitative measure of uncertainty.

Basin entropy can be understood as a nonlinear combina-
tion of multiple factors, including the fractal dimension of the
boundaries and the number of attractors within a basin. In that
way, the entropy accounts for the basin’s morphology and
allows for the creation of a rational taxonomy." For example,
Wada basins maximize the number of attractors separated by
the boundary, while riddled basins maximize the fractal di-
mension. Beyond quantifying asymptotic unpredictability in
multistable systems, the basin entropy also quantifies fractal
boundaries, bifurcations, and other defining characteristics.

Yet we are not simply doomed to observe the complexity of
multistable systems; we can attempt to tame it.”” You might find
yourself trapped in one state but want to transition to another.
In such cases, it is crucial to determine the minimal perturbation
needed to move the system out of a basin of attraction. Interest-
ingly, that minimal action provides yet another measure of the
sensitivity associated with the basins. Instead of taking a static
approach, you can use a carefully timed perturbation to drive
the evolving trajectory from one asymptotic state to another.
Regardless of the method, once the optimal window is identi-
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fied, an external control can lead the system to the desired state.
But how to make that optimum perturbation may not be known
a priori. Alternatively, other techniques bypass that difficulty by
employing feedback methods.

Delving into the realm of multistability transforms our
perception of everyday objects and unveils a world of new
possibilities. This article began with a discussion of a frivo-
lous decision-making toy, but an understanding of multista-
bility is pivotal in advanced topics such as neuroscience.'® By
leveraging the vocabulary derived from the study of non-
linear dynamics—akin to equations of motion governing a
simple pendulum—we can gain a deeper understanding of
the intricate mechanisms underlying cognitive choices. The
interplay among attractors in multistable systems mirrors
the complex cognitive processes at play when individuals
navigate decisions.

Multistability is a prevalent phenomenon observed across
various realms of physics, including classical mechanics, quan-
tum mechanics, and cosmology. Its pervasive nature highlights
its significance in unraveling the complexities of physical
phenomena across different scales and domains. Insights
derived from the study of elementary dynamical systems
often have profound implications for addressing challenges
encountered in diverse fields. The lessons learned in simple
systems provide valuable perspectives and methodological
approaches that offer fresh insights into long-standing ques-
tions across physics. Thus, the exploration of multistability not
only enriches our understanding of fundamental physics but
also fosters interdisciplinary synergies.
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