Research space increases at US universities

aboratory and research space at US colleges and universities crept up nearly 17% from 2011 to 2021, to a total of 236.1 million square feet (21.9 million square meters). That's according to a report on infrastructure use by the National Center for Science and Engineering Statistics. In total, 584 researchperforming institutions provided data about their science, engineering, and medicine departments.

Five fields accounted for nearly 84%

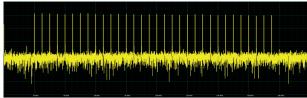
of total science and engineering research space in fiscal year 2021. Biological and biomedical science labs took up the largest chunk, with roughly 25% of the total. The next three largest fields were engineering and health sciences, each with about 17%, and agricultural sciences, with about 14%. Physical sciences had 23.9 million square feet, roughly 10% of the total. No other field accounted for more than 4% of research space.

Universities reported breaking ground on 4 million square feet in new projects in FY 2020 and FY 2021 combined. Planning ahead, institutions anticipated spending \$6.1 billion for repairs and renovations of research space through 2023; the actual data from last year are not yet available.

The report is available at https:// ncses.nsf.gov/pubs/nsf23308. It also includes data on the condition of research infrastructure and a list of the 30 institutions that boast the most research space.

Tonya Gary

SCIENCE AND ENGINEERING RESEARCH SPACE IN ACADEMIC INSTITUTIONS


	Fiscal year					
	2011	2013	2015	2017	2019	2021
Total research space* (square feet in millions)	202.2	211.8	214.5	221.2	226.9	236.1
Biological and biomedical sciences	53.7	57.2	55.9	57.7	58.3	60.0
Computer and information sciences	5.0	4.3	4.3	4.2	4.6	4.6
Engineering	31.7	33.4	34.2	35.2	38.3	40.5
Geosciences, atmospheric sciences, and ocean sciences	7.8	7.8	8.1	8.5	8.6	9.0
Mathematics and statistics	1.5	1.7	1.8	1.8	1.8	1.8
Physical sciences	21.8	22.9	22.7	23.2	23.5	23.9
Other S&E (includes health and agricultural sciences)	80.7	84.5	87.4	90.6	91.8	96.4

^{*} Totals may not add up due to rounding.

Adapted from M. T. Gibbons, University Science and Engineering Research Space Increased More Than 30 Million Square Feet in the Past Decade, NSF 23-308, National Center for Science and Engineering Statistics (2022), table 1.

DDS Instruments with 50 tones per channel

- Variants for PCle, PXle and Ethernet/LXI
- One to 32 synchronous channels
- Up to 400 DDS sine waves in one system

Example: 32 superimposed sine waves in frequency domain

- Sine signals between 1 Hz and 200 MHz
- Easy generation of sine waves using FPGA-based DDS
- Direct programming of frequency, amplitude, phase, frequency slopes and amplitude slopes
- Continuous output, only changes need to be sent
- Parameter changes in as little as 6.4 ns

Produce trains of waveforms, frequency sweeps or finely tuneable references!

Perfect for quantum, industrial, medical, imaging, network analysis or communications!

Perfect fit - modular designed solutions