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A rtificial neural networks are making 
their mark on both the world and 
its energy budget. The brain-inspired 

computing models behind so many 

popular and scientific machine-learning 
applications are proving to be tremen-
dously powerful (see, for example, 
Physics Today, October 2021, page 14). 
But they’re also power hungry (see 
Physics Today, April 2024, page 28).

One way, potentially, to lessen the 
energy burden is to design a computer 
that uses light, not electrons, to pro-
cess data. Most of the computations 
that a neural network needs to do are 
linear operations: adding, subtracting, 

and multiplying by constants. An op-
tical computer could perform those 
operations quickly and energy 
efficiently.

As adept as optical computing is 
with linear computations, though, it 
struggles mightily with nonlinear 
ones—a small but necessary ingredient 
in neural-network computing—for the 
simple reason that photons don’t gen-
erally interact with one another. Some 
nonlinear optical materials can mediate 
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A major stumbling block on 
the road to light-based 
neural networks can be 
overcome by flipping the 
script on how data are 
encoded.

Nonlinear optical computing doesn’t need 
nonlinear optics

FIGURE 1. INSPIRED BY THE BRAIN, artificial neural networks process information by passing it among layers of nodes, known as 
neurons. Along the way are matrices of trainable parameters (represented in the inset as J1 and J2) which are iteratively adjusted to 
optimize the network to perform a specific task. Here, that task is recognizing images of numerals. (Image courtesy of Clara 
Wanjura; inset adapted from ref. 1.)
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light–light interactions and thereby 
produce nonlinear responses, but they 
typically require impractically high op-
tical power.

That chain of reasoning assumes that 
data are encoded in a light field, which 
is then processed and manipulated by 
the optical neural network. But as three 
groups have now shown, that’s not the 
only way to do it. The groups’ approaches 
differ, but their common insight is to 
encode the input data not in the light it-
self but in some part of the system with 
which the light interacts. Nonlinear 
functions can then be computed with 
ease, and neural-network implementa-
tions follow.

At the Max Planck Institute for the 
Science of Light in Erlangen, Germany, 
Clara Wanjura and Florian Marquardt 
showed theoretically that input data 
can be represented as frequency offsets 
in a system of coupled resonators.1 The 
other two groups—one led by Hui Cao 
of Yale University and Sylvain Gigan 
of the École Normale Supérieure in 
Paris,2 and the other led by Demetri 
Psaltis and Christophe Moser at the 
Swiss Federal Institute of Technology 
in Lausanne (EPFL)3—experimentally 
encoded data in arrays of pixels that 
light scatters off multiple times. In 
each case, the light-based systems can 
tackle rudimentary image-classifica-

tion tasks with accuracies on par with 
digital neural networks.

Enlightened data processing
A neural network is really just a fancy 
mathematical function. It takes an 
input, such as the grainy image of a 
handwritten numeral shown in the 
inset in figure 1, and it produces an 
output: “7”. To get from one to the 
other, it processes the data through 
layers of nodes, or neurons. 

In a conventional neural network, 
each neuron computes a weighted aver-
age of all the signals feeding into it. 
Then, depending on whether the result 
exceeds a certain threshold, the neuron 
either fires or doesn’t fire—that is, it 
produces either a 1 or a 0 to feed into 
the next layer. The weights used in the 
weighted average are so-called train-
able parameters: The model is iteratively 
adjusted based on a series of inputs 
whose correct outputs are known, until 
eventually the network can correctly 
process inputs that it’s never seen 
before.

The weighted averages, which con-
sume the bulk of the computing 
power, even during the training phase, 
are the kind of linear operations at 
which optical computing excels. Sum-
ming two optical signals is as simple 
as superposing two light fields. And 

even a more complicated series of 
weighted sums can be done easily 
with a network of beamsplitters and 
phase shifters.4 

For linear operations, optical comput-
ing can outshine electronic computing 
for all the same reasons as fiber-optic 
cables excel at transmitting data over 
long distances: Information encoded 
in an optical beam can be tightly com-
pressed in both space and time, and it 
can travel long distances with little 
dissipation. So data can be processed 
with high throughput and low power.

But the big hurdle for optical neural 
networks is the simplest-sounding part 
of the computation: the decision of 
each neuron to fire or not, which is a 
nonlinear function of the input data. It 
can be computed with nonlinear optics, 
albeit with high optical power, or by 
converting signals from optical to elec-
tronic and back. But those approaches 
negate some of optical computing’s 
biggest advantages.

Happily, neural networks aren’t too 
picky about the nature of the nonlinear 
function. It doesn’t have to be an all-or-
nothing step function. In fact, most 
implementations use a smoothed step 
function for ease of computation, and 
many other nonlinear functions can be 
made to work if the network is suitably 
trained. So the question becomes, can a 

FIGURE 2. TO USE LIGHT as the basis for a neural network, researchers must rethink how they encode and process data.  
(a) A spherical cavity, partially lined with a reconfigurable array of mirrors, produces a random-looking speckle pattern when light 
bounces around inside it. But the speckles carry some surprisingly detailed information about an image encoded in the mirror array. 
(Courtesy of Fei Xia.) (b) In a more programmable implementation, four copies of an input image are encoded in a spatial light 
modulator, and an illumination beam is scattered off all of them. The system can be trained to classify the image, even one that it’s 
never seen before. (Adapted from ref. 3.)
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platform of all linear optics re-create 
any nonlinear function at all?

House of mirrors
The answer to that question—a resound-
ing yes—depends on asking the right 
follow-up question: A nonlinear function 
of what? Linear optics, by definition, can 
compute only linear functions of an 
input light field, but they can produce a 
nonlinear response to other physical pa-
rameters, such as the positions of mirrors. 
To use those nonlinearities as the basis 
for a neural network, though, requires 
making some big changes to how the 
network is structured.

Cao and her group at Yale came to the 
study of optical nonlinearities while pur-
suing a different application: Rather than 
a neural network, they wanted to create 
a physical unclonable function (PUF), a 
sort of digital fingerprint that can serve 
as a security feature in the internet of 
things.5 They took a golf ball–sized 
spherical cavity, as shown in figure 2a, 
and lined part of the interior with a re-
configurable array of tiny mirrors and 
the rest with a diffuse reflective coating. 
When they shot a laser beam into a hole 
in the cavity, the light bounced around 
inside before emerging as a speckle pat-
tern out another hole.

The output speckles depend determin-
istically and reproducibly on the mirror 
configuration, but in a way that’s almost 
impossible to replicate by anyone not in 
possession of that specific cavity. Those 
properties are what make the system a 
PUF—but is it also a neural network? It 
wouldn’t initially seem to be: It has no 
discernible neurons, weighted averages, 
or trainable parameters. But in collabora-
tion with Gigan and his postdoc Fei Xia, 
Cao and colleagues realized that the cav-
ity could act as a so-called reservoir com-
puter, a type of neural network in which 
all the computing is done first and all the 
interpretation is done later.

The speckle pattern is a highly non-
linear function of the mirror configura-
tion. On average, the researchers esti-
mate, light bounces thousands of times 
off the cavity surface before exiting, 
and at least a few hundred of those 
bounces are off the mirror array. The 
resulting speckles are full of informa-
tion about correlations among pixels in 
the input data. And correlations are 
just what all neural networks use to 
work their magic.

To make sense of the speckle pat-
tern, the researchers need only pass it 
through a decoder with one or a few 
layers of trainable weights, which is 
easy enough to do electronically. The 
mirror array, with more than 4 million 
pixels, can encode extremely detailed 
input images, and the system is capa-
ble of some complex computing tasks, 
including recognizing subtle features 
of human faces and spotting pedestri-
ans in traffic scenes. Those tasks re-
quire up to 1 million trainable param-
eters in the output decoder. But that’s 
less than a conventional neural net-
work uses for the same tasks.

The EPFL researchers were also in-
spired by Cao and colleagues’ PUF 
paper, but they took their implementa-
tion in a different direction. “We 
wanted to maintain a degree of pro-
grammability,” says Mustafa Yildirim, 
one of the paper’s co-first authors along 
with Niyazi Ulas Dinç. Like Cao, 
Gigan, and colleagues, they generate 
their nonlinearity by bouncing a light 
beam off an input image multiple 
times. But instead of leaving the scatter-
ing dynamics up to random chance, 
they send the light on a controlled 
zigzag path that scatters off a spatial 
light modulator with four distinct cop-
ies of the input, as shown in figure 2b.

The four copies of the input aren’t all 
identical. In each one, every pixel is lin-
early scaled by a pair of trainable param-
eters, so the researchers can train their 
network much like a conventional one. 
Although the light bounces only four 
times off the input, the degree of non-
linearity was sufficient for the EPFL re-
searchers to successfully train their 
system to perform simple image classifi-
cations, like distinguishing pictures of 
dogs, fish, and T-shirts. And because the 
input data are encoded four separate 
times, the network is highly robust 
against noise.

New architectures
Wanjura and Marquardt’s work is the 
most abstract of the three groups. As 
theorists, they’re focused on the mathe-
matical concepts behind neuromorphic 
computing schemes. “I’d previously em-
ployed scattering theory in my topology 
studies,” says Wanjura. “When I read 
Florian Marquardt’s lecture notes on ma-
chine learning, I noticed that the scatter-
ing matrices I had worked with had 

some similarity to the math behind neu-
ral networks. So when I joined his group 
as a postdoc, we developed the idea 
further together.”

Like a conventional neural network, 
the one that Wanjura and Marquardt 
envisioned is made up of discrete neu-
rons. But unlike a conventional neural 
network, the information in it doesn’t 
flow only one way. Rather, the light 
waves—or any waves, really—scatter 
back and forth across the network in 
both directions. With the input data and 
trainable parameters encoded in some 
of the neurons, the optical signal picks 
up a nonlinear dependence on both.

Wanjura and Marquardt proposed 
that the network could be realized by a 
system of coupled resonators, in which 
information is encoded in a resonator 
by detuning it from resonance. They’re 
collaborating with Amir Safavi-Naeini 
and his experimental group at Stanford 
University to bring their ideas to frui-
tion. But as a first step, they ran simu-
lations of their network on an ordinary 
computer to show that it works for 
classifying images of handwritten nu-
merals. “It’s ironic,” says Wanjura, 
“that the training simulations on a 
computer required a few hours, whereas 
a photonics experiment could ideally 
perform the entire training in a few 
milliseconds.”

All three of the groups’ endeavors are 
still at the proof-of-principle stage. Be-
cause all their networks process data so 
differently from conventional neural net-
works, it remains to be seen whether any 
of them can be scaled up to rival the 
powerful, power-hungry hardware that 
operates applications such as ChatGPT. 
But the implementations show that 
there’s potential value in thinking out-
side the box. “It’s motivating us to take 
more risks in optical computing,” says 
Dinç, “not just directly adapting every-
thing from electronics.”

Johanna Miller
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