SEARCH & DISCOVERY

Nonlinear optical computing doesn’t need

nonlinear optics

A major stumbling block on
the road to light-based
neural networks can be
overcome by flipping the
script on how data are
encoded.

rtificial neural networks are making
Atheir mark on both the world and
its energy budget. The brain-inspired
computing models behind so many

popular and scientific machine-learning
applications are proving to be tremen-
dously powerful (see, for example,
Pnysics Topay, October 2021, page 14).
But they’re also power hungry (see
Prysics Topay, April 2024, page 28).
One way, potentially, to lessen the
energy burden is to design a computer
that uses light, not electrons, to pro-
cess data. Most of the computations
that a neural network needs to do are
linear operations: adding, subtracting,

and multiplying by constants. An op-
tical computer could perform those
operations quickly and energy
efficiently.

As adept as optical computing is
with linear computations, though, it
struggles mightily with nonlinear
ones—a small but necessary ingredient
in neural-network computing—for the
simple reason that photons don’t gen-
erally interact with one another. Some
nonlinear optical materials can mediate

0
1
2
3
4
5)
6
7
8
9

FIGURE 1. INSPIRED BY THE BRAIN, artificial neural networks process information by passing it among layers of nodes, known as
neurons. Along the way are matrices of trainable parameters (represented in the inset as J, and J,) which are iteratively adjusted to
optimize the network to perform a specific task. Here, that task is recognizing images of numerals. (Image courtesy of Clara

Wanjura; inset adapted from ref. 1.)
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FIGURE 2. TO USE LIGHT as the basis for a neural network, researchers must rethink how they encode and process data.

(a) A spherical cavity, partially lined with a reconfigurable array of mirrors, produces a random-looking speckle pattern when light
bounces around inside it. But the speckles carry some surprisingly detailed information about an image encoded in the mirror array.
(Courtesy of Fei Xia.) (b) In a more programmable implementation, four copies of an input image are encoded in a spatial light
modulator, and an illumination beam is scattered off all of them. The system can be trained to classify the image, even one that it's

never seen before. (Adapted from ref. 3.)

light-light interactions and thereby
produce nonlinear responses, but they
typically require impractically high op-
tical power.

That chain of reasoning assumes that
data are encoded in a light field, which
is then processed and manipulated by
the optical neural network. But as three
groups have now shown, that’s not the
only way to do it. The groups” approaches
differ, but their common insight is to
encode the input data not in the light it-
self but in some part of the system with
which the light interacts. Nonlinear
functions can then be computed with
ease, and neural-network implementa-
tions follow.

At the Max Planck Institute for the
Science of Light in Erlangen, Germany,
Clara Wanjura and Florian Marquardt
showed theoretically that input data
can be represented as frequency offsets
in a system of coupled resonators.' The
other two groups—one led by Hui Cao
of Yale University and Sylvain Gigan
of the Ecole Normale Supérieure in
Paris,? and the other led by Demetri
Psaltis and Christophe Moser at the
Swiss Federal Institute of Technology
in Lausanne (EPFL)’—experimentally
encoded data in arrays of pixels that
light scatters off multiple times. In
each case, the light-based systems can
tackle rudimentary image-classifica-

tion tasks with accuracies on par with
digital neural networks.

Enlightened data processing

A neural network is really just a fancy
mathematical function. It takes an
input, such as the grainy image of a
handwritten numeral shown in the
inset in figure 1, and it produces an
output: “7”. To get from one to the
other, it processes the data through
layers of nodes, or neurons.

In a conventional neural network,
each neuron computes a weighted aver-
age of all the signals feeding into it.
Then, depending on whether the result
exceeds a certain threshold, the neuron
either fires or doesn’t fire—that is, it
produces either a 1 or a 0 to feed into
the next layer. The weights used in the
weighted average are so-called train-
able parameters: The model is iteratively
adjusted based on a series of inputs
whose correct outputs are known, until
eventually the network can correctly
process inputs that it's never seen
before.

The weighted averages, which con-
sume the bulk of the computing
power, even during the training phase,
are the kind of linear operations at
which optical computing excels. Sum-
ming two optical signals is as simple
as superposing two light fields. And

even a more complicated series of
weighted sums can be done easily
with a network of beamsplitters and
phase shifters.*

For linear operations, optical comput-
ing can outshine electronic computing
for all the same reasons as fiber-optic
cables excel at transmitting data over
long distances: Information encoded
in an optical beam can be tightly com-
pressed in both space and time, and it
can travel long distances with little
dissipation. So data can be processed
with high throughput and low power.

But the big hurdle for optical neural
networks is the simplest-sounding part
of the computation: the decision of
each neuron to fire or not, which is a
nonlinear function of the input data. It
can be computed with nonlinear optics,
albeit with high optical power, or by
converting signals from optical to elec-
tronic and back. But those approaches
negate some of optical computing’s
biggest advantages.

Happily, neural networks aren’t too
picky about the nature of the nonlinear
function. It doesn’t have to be an all-or-
nothing step function. In fact, most
implementations use a smoothed step
function for ease of computation, and
many other nonlinear functions can be
made to work if the network is suitably
trained. So the question becomes, can a
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platform of all linear optics re-create
any nonlinear function at all?

House of mirrors

The answer to that question —a resound-
ing yes—depends on asking the right
follow-up question: Anonlinear function
of what? Linear optics, by definition, can
compute only linear functions of an
input light field, but they can produce a
nonlinear response to other physical pa-
rameters, such as the positions of mirrors.
To use those nonlinearities as the basis
for a neural network, though, requires
making some big changes to how the
network is structured.

Cao and her group at Yale came to the
study of optical nonlinearities while pur-
suing a different application: Rather than
a neural network, they wanted to create
a physical unclonable function (PUF), a
sort of digital fingerprint that can serve
as a security feature in the internet of
things.> They took a golf ball-sized
spherical cavity, as shown in figure 2a,
and lined part of the interior with a re-
configurable array of tiny mirrors and
the rest with a diffuse reflective coating.
When they shot a laser beam into a hole
in the cavity, the light bounced around
inside before emerging as a speckle pat-
tern out another hole.

The output speckles depend determin-
istically and reproducibly on the mirror
configuration, but in a way that’s almost
impossible to replicate by anyone not in
possession of that specific cavity. Those
properties are what make the system a
PUF—but is it also a neural network? It
wouldn't initially seem to be: It has no
discernible neurons, weighted averages,
or trainable parameters. But in collabora-
tion with Gigan and his postdoc Fei Xia,
Cao and colleagues realized that the cav-
ity could act as a so-called reservoir com-
puter, a type of neural network in which
all the computing is done first and all the
interpretation is done later.

The speckle pattern is a highly non-
linear function of the mirror configura-
tion. On average, the researchers esti-
mate, light bounces thousands of times
off the cavity surface before exiting,
and at least a few hundred of those
bounces are off the mirror array. The
resulting speckles are full of informa-
tion about correlations among pixels in
the input data. And correlations are
just what all neural networks use to
work their magic.
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To make sense of the speckle pat-
tern, the researchers need only pass it
through a decoder with one or a few
layers of trainable weights, which is
easy enough to do electronically. The
mirror array, with more than 4 million
pixels, can encode extremely detailed
input images, and the system is capa-
ble of some complex computing tasks,
including recognizing subtle features
of human faces and spotting pedestri-
ans in traffic scenes. Those tasks re-
quire up to 1 million trainable param-
eters in the output decoder. But that’s
less than a conventional neural net-
work uses for the same tasks.

The EPFL researchers were also in-
spired by Cao and colleagues’ PUF
paper, but they took their implementa-
tion in a different direction. “We
wanted to maintain a degree of pro-
grammability,” says Mustafa Yildirim,
one of the paper’s co-first authors along
with Niyazi Ulas Ding. Like Cao,
Gigan, and colleagues, they generate
their nonlinearity by bouncing a light
beam off an input image multiple
times. But instead of leaving the scatter-
ing dynamics up to random chance,
they send the light on a controlled
zigzag path that scatters off a spatial
light modulator with four distinct cop-
ies of the input, as shown in figure 2b.

The four copies of the input aren’t all
identical. In each one, every pixel is lin-
early scaled by a pair of trainable param-
eters, so the researchers can train their
network much like a conventional one.
Although the light bounces only four
times off the input, the degree of non-
linearity was sufficient for the EPFL re-
searchers to successfully train their
system to perform simple image classifi-
cations, like distinguishing pictures of
dogs, fish, and T-shirts. And because the
input data are encoded four separate
times, the network is highly robust
against noise.

New architectures

Wanjura and Marquardt’s work is the
most abstract of the three groups. As
theorists, they’re focused on the mathe-
matical concepts behind neuromorphic
computing schemes. “I'd previously em-
ployed scattering theory in my topology
studies,” says Wanjura. “When I read
Florian Marquardt’s lecture notes on ma-
chine learning, I noticed that the scatter-
ing matrices I had worked with had

some similarity to the math behind neu-
ral networks. So when I joined his group
as a postdoc, we developed the idea
further together.”

Like a conventional neural network,
the one that Wanjura and Marquardt
envisioned is made up of discrete neu-
rons. But unlike a conventional neural
network, the information in it doesn’t
flow only one way. Rather, the light
waves—or any waves, really—scatter
back and forth across the network in
both directions. With the input data and
trainable parameters encoded in some
of the neurons, the optical signal picks
up a nonlinear dependence on both.

Wanjura and Marquardt proposed
that the network could be realized by a
system of coupled resonators, in which
information is encoded in a resonator
by detuning it from resonance. They're
collaborating with Amir Safavi-Naeini
and his experimental group at Stanford
University to bring their ideas to frui-
tion. But as a first step, they ran simu-
lations of their network on an ordinary
computer to show that it works for
classifying images of handwritten nu-
merals. “It’s ironic,” says Wanjura,
“that the training simulations on a
computer required a few hours, whereas
a photonics experiment could ideally
perform the entire training in a few
milliseconds.”

All three of the groups’ endeavors are
still at the proof-of-principle stage. Be-
cause all their networks process data so
differently from conventional neural net-
works, it remains to be seen whether any
of them can be scaled up to rival the
powerful, power-hungry hardware that
operates applications such as ChatGPT.
But the implementations show that
there’s potential value in thinking out-
side the box. “It’s motivating us to take
more risks in optical computing,” says
Ding, “not just directly adapting every-
thing from electronics.”

Johanna Miller
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