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By improving the prediction, understanding, and
communication of powerful events in the atmosphere
and ocean, artificial intelligence can revolutionize how
communities respond to climate change.

to help you prepare.

Major heat wave hitting the SW United
States in 3 weeks. Be prepared for an
extended period of extreme tempera-
tures and higher humidity than usual.

Warning: Baseball-sized hail and
strong winds from the north are ex-
tremely likely to hit your house in
approximately 20 minutes. Move be-
longings inside, and stay away from
any north-facing windows.

Extreme cold temperatures are arriv-
ing in your area in 3 days and will last
for at least 4 days. Prepare now to
ensure your pipes do not freeze, and
be ready for potentially extended peri-
ods of electrical outages.

Imagine that high-impact weather phenom-
ena, such as those described above, are forecast
with sufficiently advanced warning and preci-
sion that humankind is able to significantly
mitigate the effects of such events globally. Fur-
thermore, the predictions are known to be trust-
worthy, so individuals and local and state gov-

he year is 2028 and the weather continues
to produce climate-induced extremes,
but something has changed. Your phone
isnow giving you early, accurate warnings

ernments can act immediately
to save lives and property.

Such a scenario is not just a
vision: It may be a reality in a
few years. As the climate
changes, weather extremes are
affecting species and ecosystems around the
globe —and are becoming more extreme (see the
article by Michael Wehner, Puysics Topay, Sep-
tember 2023, page 40). At the same time, recent
developments in artificial intelligence (Al) and
machine learning (ML) are showing how that
vision might be realized.

Al offers multiple methods for handling
large quantities of data, helping automate pro-
cesses, and providing information to human
decision makers.! Traditional Al methods have
been used in environmental sciences for years.?
Such methods include statistical techniques,
such as linear regression, and basic object-
grouping methods, such as clustering. Both
have a history in environmental-science dating
back several decades.® A little over a decade
ago, weather and climate phenomena began to
be understood with more-modern Al tech-
niques, including decision trees—basically
flowcharts created by an algorithm rather than
constructed by hand—and groups of trees
known as random forests.

ML, a subset of Al, focuses on methods that
use data to learn and adapt so that they're
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SEA TURTLES were rescued off the coast of Texas by volunteers in February 2022 (left) and January 2018 (right) after the successful
prediction of a cold-stunning weather event by an artificial-intelligence-based forecasting model. After measurements of the turtles were
taken, they were transported to a rehabilitation facility. (Courtesy of AI2ES.)

generalizable to novel situations. When Al is discussed in the
news, it is most often referring to a specific form of ML called
deep learning,* which has become popular lately. The key
changes facilitating the explosion of deep learning have been the
creation of innovative ways to handle spatial and temporal de-
pendencies in the data and corresponding hardware improve-
ments, which have made it possible for neural networks, a type
of deep learning, to be trained with millions of parameters.
Deep learning has revolutionized the field of Al across var-
ious applications, including language translation, game theory,
and image recognition (see, for example, the article by Sankar
Das Sarma, Dong-Ling Deng, and Lu-Ming Duan, Puysics
Topay, March 2019, page 48). Al methods can do the same for
weather and climate predictions too (see reference 5 and Puys-
1cs Topay, May 2019, page 32). For example, multiple recent
papers have introduced global weather-forecasting systems
based entirely on Al methods. Although those systems need to
be trained by traditional numerical weather-prediction mod-
els, their predictions are made solely through a deep-learning
algorithm and do not depend on physics-based equations.®
Despite the long development history of AI methods for
predicting weather and climate events, few have been imple-
mented operationally by NOAA and private industry. Early
operational Al models were based on relatively simple architec-
tures, such as tree-based designs that can be read by humans.
Several new startup companies and larger, established compa-
nies, however, are focused on applying more complex Al meth-
ods to commercial weather-prediction products. NOAA has
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also recently begun to deploy Al methods for targeted applica-
tions. With all the changes, it is critical that AI methods are
beneficial to society, that they can be gauged by their users for
their applicability, and that their predictions can be trusted.
Developing and deploying trustworthy Al requires a diverse
multidisciplinary research team. The team at the NSF Al Institute
for Research on Trustworthy Al in Weather, Climate, and Coastal
Oceanography (AI2ES), for which the three of us work, consists
of Al developers, social scientists, atmospheric and ocean scien-
tists, and end users. AI2ES is rapidly developing new Al methods
that will enable us to improve our scientific understanding and
prediction of high-impact weather and climate phenomena, user
trust in Al products, and our communication of AI’s risks.”

Developing trustworthy Al

The diagram on page 29 outlines how the different pieces of
AI2ES work together to create trustworthy Al Traditional Al
work is often done by only computer-science researchers, but
our synergistic team is made up of researchers in Al, atmospheric
science, coastal oceanography, and risk communication. Our goal
is to ensure that we meet the needs of our end users—primarily
forecasters and emergency managers—and that we understand
what it means for Al to be trustworthy.

In any risky situation, successfully communicating and
managing risk depends on the trust between those involved.®
When applying Al methods to climate and extreme-weather
forecasting, the uncertainties of Al need to be added to the
uncertainties of the environmental predictions. The com-



pounding uncertainties raise the stakes for effectively commu-
nicating the risks and make trust even more critical. When trust
in Al is low, Al-based forecasts and warnings may be ignored
or misconstrued. Al, therefore, needs to be both trusted and
trustworthy to be used in various high-risk situations.

Trust is usually enhanced by relevant evidence of compe-
tence and reliability,’ but trust in an Al model is also contingent
on people believing that the model aligns with their own inter-
ests. Biased or poor-quality training data can lead to biased or
more-uncertain Al forecasts, which have the potential to harm
those whose actions depend on the forecasts.

Models in Earth sciences are used for many purposes. Some
examples at AI2ES include predicting freezes for various
environmental-management purposes, protecting endangered
species, and forecasting and warning for severe convective
storms to protect people and save lives. Risk attitudes and trust
are known to vary by the nature of the decision and the decision
context’®—who controls the decision making, for example, and
how catastrophic the consequences might be—and by the attri-
butes of the modeling system and modeling context.!! For those
reasons, understanding the nature of trust and developing trust-
worthy Al for Earth sciences requires codeveloping it with end
users. For applications where Al can affect vulnerable or large
populations, it’s particularly important that AI developers work-
ing with end users employ a convergence approach—that is,
have experts in the environmental, decision, and Al disciplines
work together closely on specific, compelling problems.

AI2ES is developing and testing explainable AI methods to
help describe to end users how AI models function. Existing
physics-based prediction models have the advantage of being
driven by the underlying physics of the problem; one can nu-
merically represent the Navier-Stokes equations, for example.
But because Al is unconstrained by the laws of physics, it could
come up with a solution that violates those laws. Providing end
users with different methods to understand what the Al model
has learned may improve trust, and we are interviewing end
users to understand the efficacy of those methods.

Trust, however, is contextual and subjective, and trust in Al
models for weather and climate depends on a number of addi-

Trustworthy Al

tional factors beyond peering inside the AI model. Those fac-
tors include having experience with the model over time,
documenting performance and lack of bias across a range of
extreme events for which the models are designed, and work-
ing with end users to ensure that their needs are met.

Saving sea turtles

When strong cold fronts, such as the 2021 winter storm dubbed
Uri, reach the southeast US, the temperatures of bays, lagunas,
and other shallow bodies of water cool down rapidly. Below
certain water temperature thresholds,? fish and endangered
sea turtles become lethargic, or cold stunned, and most perish
if they’re not rescued. A community-wide effort for the Texas
coast has grown since the mid 2000s to prepare for and mitigate
the events. The program was updated following Uri, during
which a record 13 000-plus sea turtles became cold stunned.
Volunteers and employees of local, state, and federal agencies
collect cold-stunned sea turtles along the shores or in bodies of
water, and barge operators voluntarily interrupt their naviga-
tion through those waters. As climate change increases the
frequency of extreme events, those types of large-scale orga-
nized human interventions will arguably need to become more
frequent and more urgent if increasingly endangered species
and fragile ecosystems are to be preserved.

To coordinate the rescue of cold-stunned turtles, a team needs
real-time predictions of key environmental parameters, such as
localized water temperature. When Al has access to time series of
parameters from past extreme events, it is particularly well suited
to develop targeted operational models, such as one for predicting
when a cold-stunning event will happen. Al can take advantage
of big, diverse data, such as gridded numerical weather predic-
tions, satellite imagery, and ground-sensor readings.

Although the calibration of AI models can be lengthy, and
care must be taken to maximize and test generalization, oper-
ational computations are fast once the information is available,
particularly when done for just a few locations. The operational
cold-stunning model is a type of neural network and has been
used since the late 2000s. The first advisory and voluntary nav-
igation interruption took place 8-10 January 2010 with a pre-
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THE COMPREHENSIVE APPROACH created by AI2ES, the NSF Al Institute for Research on Trustworthy Al in Weather, Climate, and Coastal

Oceanography. (Courtesy of AI2ES.)
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diction lead time of 48 hours. The system has been used several
times since, including during the past three winters, with pre-
diction lead times extended to 120 hours. The model is an es-
sential decision tool that local, state, and federal agency repre-
sentatives use when discussing with the private sector the
optimal timing of activity interruptions in Texas’s Laguna
Madre. The specifically designed Al model provides the long
lead time critical for redirecting cargo, contacting volunteers,
and carrying out other actions.

The sea-turtle program brings the possibility to test how
and why the trust in its Al model came about. The research
team and end users are further developing Al ensemble models
to quantify uncertainties around the predicted timing of the
cold stunnings. An events’ end is particularly challenging to
predict with a longer lead time.

As the frequency of extreme events increases, sea levels rise,
and other climate-driven challenges develop, even small flood-
ing events will have large effects. So decision makers will have
to start prioritizing and preparing for a broad range of emer-
gency events beyond the largest ones, such as hurricanes, for
which state and federal resources are deployed to assist local
responders. Results are demonstrating that Al is a well-suited
methodology to take advantage of large, diverse data sets and
model the nonlinear processes of coastal zones and other envi-
ronmental systems. Other coastal environmental models devel-
oped by AI2ES researchers include predictions of coastal fog,
coastal inundation, harmful algal blooms, eddy loop currents
in the Gulf of Mexico, and compound flooding.

Severe storms
Thunderstorms worldwide produce various dangerous haz-
ards: strong wind, lightning, hail, and tornadoes—all of which
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cause significant loss of life and property. Of the billion-dollar
weather and climate disasters counted by NOAA every year,
thunderstorms account for the majority of the cleanup cost.
AI2ES is currently creating novel Al approaches to improve the
prediction and understanding of such hazards.

One such example is predicting the initiation of thunder-
storms up to an hour before they begin. Even 30 minutes of
trustworthy warnings will save lives and property. Airplanes
could be rerouted, boats could be brought back to shore and
sheltered, and event planners could safely evacuate large out-
door events to avoid disasters, such as the hailstorm that hit
Red Rocks Amphitheatre in Morrison, Colorado, in June and
injured 80-90 people.

AI2ES’s approach to modeling convective storms is codevel-
oped with researchers in NOAA’s National Severe Storms
Laboratory. Our work builds on NOAA’s warn-on-forecast
system (WoFS)." It is a numerical weather-prediction system
that is run in real time at a high resolution over areas of the US
where the Storm Prediction Center expects a higher probability
of severe storms. AI2ES developed an Al postprocessing sys-
tem that uses numerical weather-prediction models and cur-
rent observations and outputs a real-time prediction of where
storms are most likely to occur in the next 30 minutes. To help
ensure that the system is trustworthy, AI2ES and NOAA will
continue to develop it at NOAA’s Hazardous Weather Testbed,
a unique facility that allows forecasters and emergency man-
agers to try out new technologies during severe weather events
and to provide feedback to the developers.

AI2ES is also working to improve the understanding and
prediction of tornadoes and hail. They are small-scale phenom-
ena that are challenging to predict, especially on a short time
scale and with high spatial precision, with current operational
weather models. One of our most recent methods is codevel-
oped with NOAA researchers working on the WoFS. Our focus
is on improving the nowcasting of severe hail events, which
predicts such events at high resolution spatially and within an
hour of their arrival. The WoFS runs in real time, but because
of the computational complexity of the model, which ingests all
the current observations, there is about a 15- to 30-minute lag
between the observations and the system’s predictions. We de-
veloped an Al prediction system that uses deep learning to
combine WoFS predictions with data from the National Light-



ning Detection Network, operated by Vaisala,'
and we demonstrated a significant improvement
in the accuracy of short-term hail prediction.

Ethical, responsible Al

An integral part of trustworthy Al is ensuring
that it is developed ethically and responsibly. If
not, Al for environmental sciences can go wrong
in numerous ways.'® Extreme events tend to
disproportionately harm areas with fewer re-
sources and places with histories of systematic
discrimination. It is critical that society ensures
that Al is not deployed in any manner that will
perpetuate environmental or climate injustices.
That way, society as a whole can be more resil-
ient to climate change.
Another potential issue with Al for weather
prediction is bias, which affects all aspects of the
Al training process. In recent work, we have developed a cat-
egorization of bias in Al for Earth sciences by breaking it into
four main categories, each of which influences the others."”

e Systemic and structural biases include institutional and
historical biases that can influence the choices of data that are
made available, the labels on the data used for training Al, and
other aspects of Al model development and use. For example,
we demonstrated that tropical-cyclone initiation prediction is
more likely to occur after sunrise than before because of institu-
tional practices around examining the visible satellite imagery.

e Data bias can occur because of the data selected to train
the models and the processing techniques used to prepare the
data for training. Those choices can result in data that are not
representative of the intended populations, areas, or events
being modeled. Once the data are prepared and the Al model
trained, biases can be present in the validation of the model.
Humans must choose which score they will use to validate the
model and which cases will be used as a case study. The choices
can be affected by human judgment and decision biases, such
as confirmation bias.®

e Statistical and model biases can affect the actual model
that is trained and can be strongly affected by human biases.
For example, human programmers must choose the methods
that they will use to evaluate the model.

e Human biases are present throughout AI methods, from
data selection to the choice of model, but they are also present
in the deployment and use of the model. End users, such as
forecasters and emergency managers, for example, may have
information overload or may need to make split-second deci-
sions, which can bias their use of Al

Three of the perhaps most common ethical theories are ap-
plicable to AI for the environmental sciences: consequential-
ism, which judges the morality of an action by its conse-
quences, such as through a benefit—cost analysis; deontology,
which judges whether an act is ethical by how the act conforms
to duties or moral principles, such as the imperative to be hon-
est; and virtue ethics, which argues that a “right” action is
important to achieve human well-being. Protecting the most
vulnerable might not always pass a benefit—cost rule, but de-
ontological and virtue ethics could require it, making it
imperative.

But even to understand how Al models might affect specific

decisions or users in particular circumstances generally re-
quires an insider perspective, achievable only through devel-
oping Al with the people likely to be affected. Many of those
concerns and needs can be addressed, and trustworthy Al can
be developed by early and continued codevelopment of Al
models with direct representation; meaningful, ongoing par-
ticipation of likely end-user communities; and communication
throughout the development process with risk-communication
experts. But such capabilities require organizational intent
from the teams developing the AI models.

The future of trustworthy Al

Given the current exponential growth of Al in the sciences,
society stands at the cusp of major developments in Al for sci-
ence and society in general. New methods could be developed
and deployed with a swiftness that was not possible even a few
years ago. That gives us an unprecedented opportunity to
shape the process of how Al models are developed to fully
benefit society and to address environmental and climate-
justice issues. The process, however, must ensure that the mod-
els are ethical, responsible, and deserving of trust if society is
to realize the full benefits of AL

To achieve such goals, and to minimize problems during the
release of new technology, more comprehensive processes and
development teams must be engaged. Funding from federal
agencies, private-sector entities, and other places must be
structured to reflect those needs. Codevelopment of Al re-
quires funding that allows for and encourages the develop-
ment of multidisciplinary teams committed to working with
end users. The benefits include acting ethically, avoiding large
disparities, increasing resilience to climate change, and broad-
ening the viewpoints, knowledge, and values represented on
the modeling teams.
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