The plume structure is visible in this
numerical simulation of a sheared, thermally
driven, turbulent Rayleigh-Bénard cell,
viewed at a shallow angle above the cell's
lower plate. Colors denote the variations in
temperature. (Courtesy of Alexander Blass,
University of Twente.)



Detlef Lohse (d.lohse@utwente.nl) is the chair of the physics
of fluids group at the University of Twente in Enschede, the
Netherlands. Olga Shishkina (olga.shishkina@ds.mpg.de) is
group leader at the Max Planck Institute for Dynamics and
Self-Organization in Gottingen, Germany.

Ultimate
turbulent
thermal
convection

Detlef Lohse and Olga Shishkina

Recent studies of a model system—a
fluid in a box heated from below and
cooled from above—provide insights
into the physics of turbulent thermal
convection. But upscaling the system
to extremely strong turbulence
remains difficult.

hermally driven turbulent flow can
be found throughout nature and
technology. Such flow transports
not only heat but also mass and
momentum. Comprehending what
determines that transport is key to understanding
numerous geophysical and astrophysical flows
and to being able to control the industrial and more
general flows that people experience every day.
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FIGURE 1. THREE-DIMENSIONAL VISUALIZATION of experimental turbulent structures (a) in half of a cylindrical Rayleigh-Bénard cell
with diameter-to-height aspect ratio I = 4, Rayleigh number Ra = 1.5 x 10%, and Prandtl number Pr = 0.7 (see the main text for definitions).
The particles with trails reveal small turbulent structures in the dominating large-scale convection, which has typical velocity U. The
vertical component of the velocity, U, , is plotted here, normalized by the so-called free-fall velocity U, = VBAgL. (Adapted from P. Godbersen
et al,, Phys. Rev. Fluids 6, 110509, 2021.) (b) This cross-sectional snapshot from a fully resolved direct numerical simulation of a cylindrical
convection cell with Ra =103, Pr=1, and I = %5 shows the dimensionless temperature field T, which varies from 0 at the top of the cell to 1
at the bottom. It reveals the tiny detaching plume structure. (Courtesy of Richard Stevens, University of Twente; based on an advanced
finite-difference code developed by Roberto Verzicco, Tor Vergata University of Rome.)

Geophysical flows include the transport of heat in the atmo-
sphere and the ocean, which determines weather, climate,
ocean circulation, and the melting of ice shelves. Astrophysical
examples include the transport of heat in the core and in the
outer layer of stars and planets. Industrial examples include
the transport of heat in chemical reactors and in electrolysis
and other contexts of energy conversion. At the human scale,
people most directly experience heat transport in the buildings,
rooms, and vehicles whose temperature they control.

In all those systems, the fundamental question is, How
much heat, mass, or momentum is transferred by the system?
Direct measurements are difficult to make, as the geometries
are often complicated, heat may leak out of the system, the
boundary conditions may not be well known or well con-
trolled, and global measurements may not be possible, given
the length scales of the systems. What's more, direct numerical
simulations may be prohibitive if the exact experimental
boundary conditions are unknown.

Given those difficulties, the aim should be to understand
real systems by using simple model systems, from which one
can extrapolate the transport properties to the relevant flows.
But developing those models requires a deep understanding
of the system. That is especially true when the system under-
goes a transition from one state to another—from a lami-
nar-like state to a turbulent one, for instance—as then the
transport properties of the flow can dramatically change. It is
thus key to identify possible transitions between different
states in such systems.
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The most famous and most frequently used model to study
thermally driven flows is the Rayleigh-Bénard (RB) system. It
consists of a flow in a closed box of height L, homogeneously
heated from below through a hot bottom plate and cooled from
above through a cold top plate. The flow is driven by the den-
sity differences between the lighter (usually hot) fluid, whose
buoyancy makes it rise, and the heavier (usually cold) fluid,
which sinks. Figure 1, which shows experimental and numer-
ical snapshots of the flow field for strong thermal driving—to
be quantified below —illustrates the complexity of the flow
and the large-scale structure that evolves, which is known as
the “wind of turbulence” (see the article by Leo Kadanoff,
Pnysics Topay, August 2001, page 34).

RB convection has always been a popular playground in
which to develop new concepts, such as instabilities, nonlinear
dynamics, and the emergence of spatiotemporal chaos and
patterns.! For very weak driving, the system has few degrees
of freedom—it can be described using few coupled ordinary
differential equations—but with increasing driving force it
gains more degrees of freedom and eventually becomes turbu-
lent.>* The RB paradigm applies to heat transfer as well as mass
transfer if it is driven by density differences—for example, in
a system with heavier salty water at the top and lighter fresh
water at the bottom, as can be found in the ocean and in indus-
trial applications.

Several reasons account for the paradigm’s popularity. The
underlying dynamical equations—the Navier-Stokes equa-
tion, the advection-diffusion equation, and the continuity



Rayleigh and Prandtl numbers

For a Rayleigh—Bénard (RB) cell of height
L, with a temperature difference A be-
tween the hot plate on the bottom and
the cold plate on the top, the Rayleigh
number Ra is defined as BgL*A/(vk),
where § is the thermal expansion coeffi-
cient, ¢ the gravitational acceleration, v
the kinematic viscosity, and « the ther-
mal diffusivity. The ratio v/x is the
Prandtl number Pr.

In principle, there are three methods
for achieving large Rayleigh numbers in
an RB system: Maintain a large A, use a
box with large L, and make sure v and x

are both small. But each method has its
own caveats and difficulties.

Here are some typical values for the
Rayleigh and Prandtl numbers: Convec-
tive fluid motion sets in at Ra ~ 2000 for
a large-enough aspect ratio of width to
depth, independent of Pr. Under stron-
ger forcing, the flow becomes turbulent,
and much more complicated flow struc-
tures emerge, as shown in figure 1. For
water, for which Pr typically ranges from
4 to 10, in a 20-cm-high container heated
to 60 °C from below and cooled to 30 °C
from above, Ra can reach up to 10*. In

industrial applications with L = 20 m, the
same temperature difference implies
that Ra is roughly 10'.

In the atmosphere, where Pr = 0.7,
values of Ra above 10?! are not uncommon.
In the ocean, assuming a water depth of
5 km, Ra can exceed 10%, whereas in the
upper convective zone of the Sun or stars,
it is on the order of 10%. Liquid metals,
like those in Earth’s core, typically have
Pr ~ 0.01. The magma in Earth’s mantle
has Pr~10% because of the high viscosity,
which typically leads to an Ra value of
only 10° to 107.

equation—result from momentum, energy, and mass conser-
vation, respectively. And the respective boundary conditions
are well known, so the system is mathematically well defined.
The RB system is closed, so that exact global balances between
the forcing and the dissipation can be derived. It also has var-
ious symmetries, such as temporal and spatial translation sym-
metries, rotational symmetry, and, for small-enough tempera-
ture differences, top—bottom reflection symmetry; they make it
attractive for theoretical approaches. And thanks to its simple
geometry, the system is accessible to controlled experiments
and to direct numerical simulations, provided the thermal
driving is not too strong.

Dimensionless numbers

The most relevant question in turbulent RB convection is, How
does the heat transport—that is, the time- and area-averaged
vertical heat flux (in dimensionless form, the Nusselt number
Nu, the ratio of convective to conductive heat transfer) —depend
on the three dimensionless control parameters of the system?
Those parameters are the Rayleigh number Ra (the nondimen-
sionalized temperature difference A between the hot and cold
plates—that is, the thermal driving strength), the Prandtl
number Pr (the ratio of the momentum diffusivity to thermal
diffusivity), and the aspect ratio I' (the ratio of the container’s
width to its height).

The box above lists some typical values for Ra and Pr in na-
ture and technology. Both Nu and the Reynolds number Re (the
ratio of inertial forces to viscous forces) are dependent on Ra, Pr,
and I'. Those dependencies are traditionally sought in the form
of scaling laws: Nu ~ Ra’Pr® and Re ~ Ra*Pr". Researchers have
tried to measure and understand those dependencies for at least
the last 60 years.*® And for the past 30 years, they have been
helped by direct numerical simulations of the system.

Classical regime

In the regime of Rayleigh numbers up to Ra ~ 10" —which has
become feasible in many labs over the past three decades and
is nowadays known as the classical regime of turbulent RB
convection—researchers have reached broad agreement
among various experiments and numerical simulations. Figure
2 shows Nu(Ra, Pr) for Prandtl numbers varying over six de-
cades, 10° < Pr < 10°, in cylindrical cells with %2 ST < 1. Re-
searchers have a good understanding of the regime, thanks to

a unifying theoretical approach to wall-bounded turbulence
developed by Siegfried Grossmann and one of us (Lohse).*
Called the GL theory, it builds on the ideas of Ludwig Prandlt],
Heinrich Blasius, Andrey Kolmogorov, and Sergei Obukhov.

The unifying theory uses two exact equations, which are
straightforwardly obtained by volume integration and the di-
vergence theorem from the Navier-Stokes equations for the
velocity field u(x, t), driven by the buoyancy force from the
temperature, and from the advection equation for the tempera-
ture field O(x, t); here x denotes spatial coordinates and ¢, time.
Assuming that the material properties apart from density are
temperature independent, the two equations for the time- and
volume-averaged viscous and thermal dissipation rates are,
respectively,

3
£ =v(QuxH)), = 2—4(Nu ~1)RaPr? and

g9 =1{(0,0(x,1))), = Kf—;Nu.

Those equations are remarkable insofar as they connect
volume-averaged quantities (¢, and ¢,) with the vertical heat
transport, Nu. The basic assumption of the GL theory is that
the physics inside the turbulent core—the bulk of the flow —is
fundamentally different from that in the boundary layers
(BLs), as shown in figures 3a—3b. Accordingly, the time- and
volume-averaged viscous and thermal dissipation rates are
composed of two parts, namely

& =€ T Epue (1)
and

Eg=Egp t e (2)

Because of the differing physics in the bulk and in the
boundary layers, their scaling behaviors differ as well. That, in
turn, rules out the traditionally assumed pure scaling behavior
Nu ~ Ra"Pr® and Re ~ Ra*Pr" over the full range of Ra and Pr.

How do the four individual contributions in equations 1
and 2 scale? In the turbulent bulk, the viscous and thermal
dissipation rates ¢, and ¢, follow the 1941 Kolmogorov—
Obukhov scaling relations for turbulent flow (Kolmogorov
turbulence). In terms of the turbulent wind velocity U and the
temperature difference A between the plates, those relations
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imply that ¢, ~ UY/L and ¢, ~ A*U/L. Those scaling rela-
tions cannot hold in the boundary layers near the walls, where
viscosity and thermal diffusivity matter. There, as long as the
driving is not too strong, the viscous and thermal dissipation
rates ¢, 5 and €, 5, scale according to the Prandtl-Blasius theory
for laminar-type boundary layers that develop along a solid
horizontal plate when a fluid flow has relatively low velocity.
(See the article by John D. Anderson Jr, Puysics Topay, Decem-
ber 2005, page 42.)

The splitting of wall-bounded turbulent flow into two re-
gions in equations 1 and 2 can be understood by analogy to
Prandtl’s foundational insight from 1904 that the potential, or
Bernoulli, flow around a plate cannot hold close to the plate
itself but must be matched to boundary layers with quite dif-
ferent physics and scaling relations. Only with that insight
could Prandtl have obtained the observed Reynolds-number
dependence of the drag, as shown in figures 3d-3f. The GL
theory follows the same spirit, but for wall-bounded turbulent
flow, the outer flow is not of the Bernoulli type but of the
Kolmogorov-Obukhov type.

The details of the GL theory are worked out in references 2
and 4. The theory describes the experimentally and numerically
observed dependencies Nu(Ra, Pr) and Re(Ra, Pr) over six orders
of magnitude in Ra and in Pr up to Ra of about 10" The theory
has proven its predictive power for Ra and Pr parameter ranges
for which measurements were carried out only later. The team
of Ke-Qing Xia (Chinese University of Hong Kong) measured
for large Pr values, and the teams of Sven Eckert (Helmholtz
Center Dresden-Rossendorf), Peter Frick (Polytechnical Univer-
sity of Perm), and Jonathan Aurnou (UCLA) measured for small
ones.

The key idea of the GL theory —namely, to start from exact
global balance equations and to split the dissipation rates into
boundary-layer and bulk contributions —is quite general. It has
also been applied successfully to various other turbulent flows,
such as internally heated turbulence, double-diffusive convec-
tion—in which the flow velocity is coupled to both the tem-
perature and the salinity —horizontal convection, and magne-
tohydrodynamically driven turbulence.

Experiments at large Ra

For very large thermal driving beyond Ra ~ 10", the experimen-
tal results for Nu(Ra, Pr) seem to contradict each other, as shown
in figure 2: For very similar Pr, the Nu(Ra) dependencies are
quite different in different experiments. For those large Ra, di-
rect numerical simulations become increasingly difficult to
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FIGURE 2. HEAT TRANSPORT, parameterized by the dimensionless
Nusselt number Nu (the ratio of convective to conductive heat
transfer), depends on the control parameters of the system—the
Rayleigh number Ra and Prandtl number Pr. It is plotted here
divided by Ra®, so that differences can be better seen. Colors
denote the Prandtl number dependence. The experimental and
numerical data points, taken between 1997 and 2020, come from
various groups, most of which are discussed and cited in this article.
The solid lines were produced for various Prandtl numbers using the
Grossmann-Lohse unified theory for Rayleigh-Bénard turbulence.*

perform because of the many degrees of freedom in the system;
extremely fine computational grids are required to run the sim-
ulations. For many applications, including those in geological
and astrophysical contexts, however, the large-Ra limit is of
particular interest. So how can one extrapolate insights from the
lab scale and numerical simulations at smaller Ra and estimate
the heat transport and the turbulence intensity on geo- and as-
trophysical scales? And how can one perform experiments for
very large values of Ra in order to scale up the RB system?

To open the large-Ra regime to experimental studies, the
University of Chicago’s Albert Libchaber and colleagues used
helium gas close to its critical point in an RB system, as it has
extremely low kinematic viscosity and thermal conductivity. In
1989 he and his coworkers® achieved Ra ~10™. Bernard Castaing,
Philippe Roche, and coworkers in Grenoble, France, continued
to pursue that line of research. In 1997, Castaing and his collab-
orators® found a transition around Ra ~ 10" toward a steeper
effective scaling of roughly Nu ~ Ra®*, much larger than has
been seen at lower Ra, where the effective scaling exponent
never exceeds %;. They termed that new regime “ultimate.”

In later work, Roche and his colleagues found the transition
Rayleigh number to vary up to Ra ~ 10", depending mainly on
the aspect ratio of the cell and the Prandtl number.” The tran-
sition was also evidenced by the buildup of fluctuations in the
boundary layer at the same transition Rayleigh number, sup-
porting the view that the transition is connected with a de-
stabilization of the boundary layer —meaning that in the new
regime, the flow in the bulk and in the boundary layers are
both turbulent.

Russell Donnelly and coworkers at the University of Ore-
gon followed Libchaber’s path of using helium gas as the work-
ing fluid close to its critical point,® but they increased the height
of the RB cell and achieved an even larger Ra, up to ~ 10”. In
those experiments, however, no transition to a regime with
enhanced scaling dependence for Nu could be identified. Nor
was there evidence for an enhanced scaling regime in team
members’ follow-up experiments, carried out by Joseph
Niemela and Katepalli Sreenivasan’ and by Ladislav Skrbek
and coworkers.'

Guenter Ahlers and Eberhard Bodenschatz proposed an-
other idea for how to achieve very large Ra—namely, to use
pressurized sulfur hexafluoride as the working fluid. The ad-
vantage of using pressurized SF, in RB experiments is that over
a very large Ra range the system keeps roughly the same Pr.
Ahlers, Bodenschatz, and coworkers at the Max Planck Insti-
tute for Dynamics and Self-Organization in Gottingen, Ger-
many, performed their experiments with SF, pressurized up to
19 bars, for which Pr remains roughly 0.7. In 2012 they ob-
served a transition to an ultimate RB regime around Ra ~ 10"
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FIGURE 3. THE ANALOGY between Rayleigh-Bénard flow and parallel flow along a flat plate. (a-c) In turbulent Rayleigh-Bénard
convection, the core part of the flow is always turbulent (Kolmogorov turbulence), whereas the flow velocity along the wall drops to zero,
as illustrated by the decreasing magnitude of blue arrows on each side in panel a. With increasing thermal driving strength—in other
words, increasing Rayleigh number Ra—the boundary layers (BLs) change from a laminar (blue) Prandtl-Blasius type BL, with velocity
profiles sketched in blue, to a turbulent (red) Prandtl-von Karman type BL. The different cases have distinct dependencies of the heat
transport (expressed by the Nusselt number Nu) on Ra, as shown, respectively, by the blue and red lines in panel c. (d-f) Parallel flow along
a flat plate undergoes an analogous transition between laminar and turbulent BLs, each with different dependencies of the skin-friction
coefficient C; on the Reynolds number Re, as sketched, respectively, with blue and red lines in panel f.

and with an aspect-ratio dependence consistent with the
Grenoble results. The Nu dependence on Ra was steeper above
the transition than below it and can be described with an effec-
tive scaling law Nu ~ Ra"® (see reference 11 and later papers
by the Gottingen group). The sharp transition was found not
only for Nu but also for Re and consistently at the same Ra. That
observation also supports the view of a fundamental flow tran-
sition in an RB cell.

The discrepancy in the large-Ra regime between a typical
Grenoble data set (with a transition toward an enhanced scal-
ing around Ra ~ 10), a typical Oregon data set (without a
transition), and a typical Gottingen data set (with a transition
around Ra ~ 10™) can be seen in figure 2. What is the origin of
those different findings in the large-Ra experiments, even for
very similar control parameters? At the moment, that’s an open
question.

Ultimate turbulence regime
What do theories suggest about the existence of an ultimate
regime? As early as 1962, Robert Kraichnan proposed an ulti-

mate regime of RB convection'? and assumed a fully turbulent
boundary layer and a certain scaling relation between Nu and
Re for that boundary layer. He obtained Nu ~ Ra”:Pr”, with
logarithmic corrections. Note that in the ultimate regime, in no
case can Nu grow faster than ~Ra”. That upper bound, which
is much larger than any experimental or numerical data for Nu,
was rigorously proved" by Louis N. Howard in 1963, with
Nu—1<CRa", in which Cis the constant V3/8. Other researchers
verified the upper bound for slightly smaller values of C later."

The GL theory of thermal convection® also suggests an ulti-
mate regime: For large-enough driving strength, the laminar
Prandtl-Blasius boundary layers, shown in figure 3a, should
become unstable and undergo a transition toward turbulent
boundary layers, the so-called Prandtl-von Karman boundary
layers (figure 3b). The transition is a direct analogue of the
laminar-to-turbulent transitions of the boundary layers around
a plate, as shown in figures 3d-3e or within a pipe. Those tran-
sitions are subcritical —meaning that around the transition
different states coexist—and have a so-called nonnormal and
nonlinear character, where nonnormal refers to the eigen-
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vectors of the linear operator being nonorthogonal. Such tran-
sitions have a double-threshold behavior: They can arise when
the shear is sufficiently strong and disturbances (such as small
wall roughnesses or thermal inhomogeneities in the plates) are
large enough to trigger the onset.”

Typically, such an onset of shear instability in wall-parallel
flow happens when the shear Reynolds number Re, exceeds a
value of about 420, as estimated by Walter Tollmien almost a
century ago. The GL theory adopts Tollmien’s value as a typical
guideline for the onset of the shear instability (for I' ~ 1), al-
though, of course, in the case of RB flow in a box, the flow is
not strictly parallel to the wall. For Pr=0.7 and I ~ 1, the critical
Rayleigh number for the onset of the ultimate regime in RB
convection* can be estimated to be around 10™. But given the
double-threshold feature of the transition, it may also be earlier
or later for different small disturbances. For larger Pr or smaller
T, the critical Rayleigh number increases.

What dependence Nu(Ra, Pr) should be expected in the
ultimate regime? From an integration of the energy-dissi-
pation rate in the turbulent boundary layer,'® one obtains
Nu ~ Ra”Pr”/(log(Ra))?, which in today’s experimentally acces-
sible regime implies an effective scaling of roughly Nu ~ Ra®%®.

How then can one reconcile the various seemingly contra-
dictory measurements of Nu(Ra, Pr) for Ra > 10", evident in
figure 2? The analogy to pipe flow or other shear flows has been
helpful to researchers, and over the past few years, they have
made some intriguing suggestions as to why the Rayleigh
numbers of the observed transitions to the ultimate regime
depend on details of the different experiments. The key idea,
proposed by Roche in 2020, is to realize the subcritical nature
of the transition, which has the above-mentioned dou-
ble-threshold behavior and is the typical feature of transitions
in shear flows," applies in this case because of the strong local
shear at the boundaries.

The subcritical nature of the transition implies that multiple
states can coexist and that the transition is hysteretic—it de-
pends on the system’s history—and that for strong-enough
shear, even quite small disturbances can trigger the transition
from laminar flow to turbulent flow (notice the analogy be-
tween figure 3¢ and figure 3f). That interpretation has the po-
tential to reconcile the various observations and different val-
ues of the Rayleigh number at which the transition occurs.

Although the transition toward an ultimate turbulence re-
gime for RB turbulence is under intense discussion, no one
disputes its relevance for Taylor-Couette (TC) turbulence.”
The TC system —two coaxial corotating or counterrotating cyl-
inders with fluid between them —is sometimes called the twin
of the RB configuration because of many similarities between
the two systems.' The analogy between RB and TC also holds
in the ultimate regime and has been observed in all of the ex-
periments and numerical simulations of turbulent TC flow
made at large-enough driving strength.

Thatlarge-enough driving strength is more easily accessible
in TC flow than in RB flow reflects the fact that the mechanical
driving in TC flow is much more effective than the thermal
driving in RB flow. Similarly, one should also expect an ulti-
mate regime in pipe flow, horizontal convection, and other
systems. Were the existence of an ultimate regime doubted in
any of those flows, then one would have to come up with a
mechanism by which the laminar flow in the boundary layers
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would remain laminar at arbitrarily large driving strength and
the transition to turbulence would be suppressed. Frankly, we
do not see what such a mechanism could be.

How then can the controversy on the ultimate regime in RB
flow be settled? Given that striving toward ever-larger experi-
ments and numerical simulations is extremely difficult and
costly, one possibly promising route is to further explore the
analogy to the laminar-to-turbulent transition in flow around
a plate, illustrated in figure 3, or in pipe flow. In both cases a
detailed analysis of the lifetime of disturbances of different
strength has led researchers to conclude that the transition can
be interpreted as a directed percolation transition.”® Such a
transition is quite universal in physics, and it also applies, for
example, to epidemiological models for the spreading of dis-
eases. One can hope that analogous experiments, as in pipe
flow, and corresponding numerical simulations—including
those in which Prandtl numbers vary —will further elucidate
the fascinating transition to the ultimate regime.

The issue is of utmost relevance: Researchers must under-
stand how to extrapolate the heat flux from controlled lab-scale
experiments to the scales relevant in geophysical contexts.
Whether a transition to an ultimate regime occurs or not will
change the heat flux by orders of magnitude. But climate mod-
els and models for heat circulation in the ocean—with their
implications for melting glaciers, nutrition transport, and the
prediction of tipping points—clearly require more precision
and reliability.

The scientific insights conveyed in this article come from more than
three decades of collaborations and interactions with colleagues, post-
docs, and doctoral students. We thank all of them for their contribu-
tions and for the intellectual pleasure we have enjoyed while working
together. We thank Dennis van Gils for help with the figures.
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