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One family of tools, called topological data anal-
ysis (TDA), employs ideas from the mathematical 
fi eld of algebraic topology.1 Algebraic topology 
gives a framework to rigorously and quantitatively 
describe the global structure of a space. By building 
on and adapting this framework, researchers in 
physics and many other disciplines are increas-
ingly using TDA to examine how the “shape” of 
data changes when one views a system at diff erent 
scales.2 TDA has led to fascinating insights in bio-
physics, granular materials, fl uid dynamics, and 
many other areas. It has been used to study phase 
transitions,3 temperature fl uctuations in the cosmic 
microwave background,4 chaotic behavior in non-
linear dynamical systems,5 and much more.6

In this article, we present a few examples of 
TDA in condensed- maĴ er and soft- maĴ er physics. 
We hope that this small selection of TDA research 
in physics will help illustrate the fl avor of insights 

that one can obtain by applying a topological lens 
to data.

A few ideas from topology
Topology is a branch of mathematics that concerns 
the shapes of objects.1 It provides a framework that 
describes the properties of an object that stay the 
same if we stretch it, shrink it, or bend it without any 
tearing or gluing. Consider a circular rubber band. 
Because we can stretch the rubber band into an oval, 
the circle and the oval are topologically equivalent. 
However, the rubber band is not topologically equiv-
alent to a segment of a string: The circular rubber 
band has a hole in the middle, but the string does not.

An important aspect of topology is the charac-
terization of the connectedness of objects by count-
ing their numbers of pieces and numbers of holes. 
Researchers use that information to group objects 
into diff erent types. For example, a doughnut has 
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Topological data analysis, which allows systematic 

investigations of the “shape” of data, has yielded fascinating 

insights into many physical systems.

A 
wealth of complex data is increasingly available in almost every as-
pect of the physical and social world. Such copious data off er the 
potential to help unlock new ways of understanding and manipulat-
ing our surroundings. The demographic characteristics of human 
populations convey information about heterogeneous regions of a city 

or a country, and our online activities encode data about who we are and what we 
do. Networked systems— in people, cities, animals, plants, computers, and more— 
are also rich in data, which are present both in their structure and in their dynamics. 
The fl ows of nutrients in vascular structures, the complicated dynamics of fl uids, and 
the forces in granular materials all provide huge amounts of complex data. Parsing— 
 and hopefully eventually understanding— such data requires a diverse set of tools.
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the same number of holes and the same number of pieces as a 
coff ee cup with one handle (see fi gure 1), but it is diff erent from 
a fi lled sphere, which has the same number of pieces but does 
not have any holes.

Algebraic topology gives a framework to rigorously and 
quantitatively describe the global structure of a space. Methods 
for characterizing the global structure of a topological space 
and objects within it rely on information about the entire space. 
If we look at a neighborhood of any point on a sphere, we ob-
tain a surface with the same properties as a plane. By zooming 
in extremely closely, we no longer notice the sphere’s curva-
ture. To a human standing on a very large sphere, such as a 
planet, the surface appears to be fl at. We recover the fact that 
the sphere has curvature by considering all of its neighbor-
hoods, but we still don’t pick up whether there’s a void inside 
the sphere. To fully characterize the structure of a sphere, we 
need to consider the entire sphere at once.

To consider an entire object at once, we use the algebraic- 
topology concept of homology, which allows us to distinguish 
between objects based on their numbers and types of “holes.” 
To make this distinction, we need the notion of a topological 
space X. Such a space consists of a set of points, along with 
neighborhoods of each point, that satisfy certain axioms that 
relate them.1 Intuitively, we consider neighborhoods of a cer-
tain size around each point and defi ne what it means for the 
points to be “close” to each other based on whether their neigh-
borhoods overlap. We do not require a numerical value to 
quantify that closeness; we just need to know when neighbor-
hoods overlap. This gives crucial fl exibility for using topolog-
ical tools in applications.2

To develop an understanding of homology, it helps to be 
more precise. The homology of a topological space X is a set of 
topological invariants that are represented by homology 
groups Hk(X), which describe k-dimensional holes in X. The 
rank of Hk(X) is called the BeĴ i number; it is analogous to the 
dimension of a vector space and counts the number of k- 
dimensional holes. A feature in H0 is zero- dimensional and can 
be visualized as a point; the rank of H0 is the number of distinct 
connected components in X. Similarly, a feature in H1 is one- 
dimensional and can be visualized as a cycle (that is, a loop). 
A feature in H2 is two- dimensional and can be visualized as a 
cavity. Researchers also examine Hk for larger values of k, but 
it is harder to visualize the associated features.

Returning to our fi lled sphere and our coff ee cup, the sphere 
consists of one connected component and zero 1D holes— that 
is, no cycles— so rank(H0) = 1 and rank(H1) = 0; its zeroth BeĴ i 
number is 1 and its fi rst BeĴ i number is 0. By contrast, a coff ee 
cup has rank(H0) = 1 and, because of its 1D hole, it has 
rank(H1) = 1. We can also use homology to distinguish between 
a fi lled sphere and a spherical shell. The former does not have 
a cavity, so rank(H2) = 0, but the laĴ er does, so rank(H2) = 1.

The shape of data
To identify “holes” in a data set and thereby describe its topolog-
ical “shape,” we need to assign a topological structure to the data 
and compute topological invariants. Homology groups are good 
invariants because there are effi  cient algorithms to compute them.

The most widely used tool in TDA is persistent homology 
(PH). In PH, one examines homologies across the scales of a data 
set.2,7 Traditionally, one interprets topological features, such as 

cycles or cavities, that exist for a large range of scales— that is, 
persistent features— as genuine features of a data set and topo-
logical features that exist for only a small range of scales as noise.

To introduce the main idea of PH, let’s start with a collection 
of dots (see fi gure 2). Such an object, called a point cloud, is 
commonly studied in TDA.2 Point clouds have an inherent 0D 
structure, and they thus have few interesting topological prop-
erties when viewed as a fi nite collection of points. We now 
place a ball of some radius ε around each point. The scaling 
parameter ε, which is sometimes called a fi ltration parameter, 
allows us to encode geometric information. The balls fi ll in areas 
between points that are close to each other. Essentially, we are 
squinting at a point cloud so that it blurs and takes some shape. 
The harder we squint— that is, as we increase the value of ε—
the more the boundaries of the shape blur and expand. Points 
that start out as distinct begin to overlap with each other as ε 
increases, so the notion of what it means to be “close” changes.

Figure 2 demonstrates this idea with the Pokémon known 
as Jigglypuff . Jigglypuff  starts out as a collection of dots— that 
is, a point cloud (fi gure 2a). As we increase the radius ε of the 
dots, progressively more of them overlap (fi gure 2b), and it 
becomes easier to identify Jigglypuff . As we continue increas-
ing the radius of the dots, Jigglypuff  has progressively fewer 
components (that is, rank(H0) decreases) and develops some 
1D holes (that is, rank(H1) increases). As ε becomes larger, some 
holes also disappear (fi gure 2c), and it becomes harder to iden-
tify Jigglypuff . Eventually, when ε becomes suffi  ciently large, 
all of the holes disappear (fi gure 2d). We can see diff erent fea-
tures of Jigglypuff  at diff erent values of ε. A topological feature 
is “born” at the value of ε at which it fi rst appears and “dies” 
at the value of ε at which it disappears.

The images in fi gure 2 demonstrate how the topological 
features that one obtains from a point cloud change as one 
views them at diff erent scales. To examine the features system-
atically, one constructs a computationally convenient mathemat-
ical object from such images.7 One such object is a fi ltered sim-

FIGURE 1. TOPOLOGY is a branch of mathematics that concerns 
the shapes of objects. The aim of topology is to describe the 
properties of an object that stay the same if it is stretched, shrunk, 
or bent without any tearing or gluing. A classic joke is that a 
topologist cannot tell the diff erence between a coff ee cup and a 
doughnut because they both are a single object with a single hole; 
that is, they are topologically equivalent. (Courtesy of Henry 
Segerman and Keenan Crane; used with permission.)
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plicial complex, which is a sequence of simplicial complexes that 
are nested inside each other. A simplicial complex is a space 
that is built from a union of points, edges, triangles, tetrahedra, 
and higher-dimensional polytopes. (A polytope is a geometric 
object with fl at faces and edges; it is a generalization of poly-
gons and polyhedra to any number of dimensions.) The word 
“fi ltered” describes how simplicial complexes nest inside each 
other as one varies some parameter, such as the radius of the 
dots in fi gure 2.

Simplicial complexes are topological spaces that one can use 
to approximate other topological spaces in a way that captures 
their topological properties. For example, a tetrahedron can 
approximate a sphere. There are many choices for how to con-
struct a fi ltered simplicial complex. For instance, in fi gure 2, the 
simplicial complex is based on distance (the dot size). For a given 
application, it is desirable to choose a construction that satisfi es 
the intuition that genuine features are also persistent features.

The extension of homology to PH allows us to quantify 
holes in data in a meaningful way. We are interested in per-
sistent holes (and other persistent fea-
tures), such as Jigglypuff ’s eyes in fi g-
ure 2, that exist for a large range of 
values of an adjustable parameter. 
When studying physical systems, it is 
desirable for the parameter to corre-
spond to something physical. Such 
homological ideas have been used to 
analyze data sets in many applica-
tions.2,7 The computation of PH has 
been especially prominent in neuro-
science,8 and it has also been used in 
areas such as granular physics, fl uid 
dynamics, nonlinear dynamics, cos-
mology, string theory, and computer 
vision.

Introductions to PH and to TDA 
more generally are available for a vari-
ety of audiences. See reference 9 for an 
introduction to TDA and PH for teen-
agers and preteens, reference 2 for a 
recent review of TDA for a general 
physics audience, and reference 1 for 
a classic textbook on the mathematics 
of TDA. Reference 7 overviews PH and 

gives an introduction to the installation, use, and benchmark-
ing of several software packages for it.

Amorphous and granular matter
TDA has yielded many insights into granular and amorphous 
maĴ er. Notions of connectivity and gaps are natural in such 
systems,10 and they relate to important physical ideas, such as 
which parts of a system will fail fi rst and which physical quan-
tities to measure to forecast the onset of failure. They are also 
relevant for obtaining insights into packing, jamming, and 
characterizing the diff erent states of a system.

Lou Kondic and colleagues used PH to track how simula-
tions of 2D granular force networks— sets of interparticle con-
tacts that carry loads that are larger than the mean load of a 
system— evolve as a system crosses a jamming point.11 They 
used the interparticle force as a fi ltration parameter. To com-
pute H0, they determined the distinct components of mutually 
contacting particles that experience forces above that force. 
They associated the jamming transition with a sudden large 
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FIGURE 2. THICKENING THE DOTS of a point cloud and observing 
the changes in topological structure allows one to study the 
persistent homology (PH) of a data set. This fi gure depicts the 
Pokémon known as Jigglypuff , which we draw using dots of various 
sizes. As the dots thicken, both the number of connected 
components (that is, the 0D features) and the number of loops (that 
is, 1D holes, which are also called cycles) change. (a) When the dots 
are small, they do not overlap, so there are many components and 
no cycles. (b) As the dot size increases, some of the dots start to 
overlap, so there are fewer components; some cycles are also “born.” 
At fi rst, Jigglypuff  becomes easier to discern, but (c) it then becomes 
harder to recognize until (d) eventually all of the cycles have “died” 
and it is one giant blob. By recording the dot sizes at which each 
component and each cycle is born and dies, we can track topological 
features in Jigglypuff . This collection of features and dot sizes is the PH 
of this thickening of Jigglypuff . (Adapted with permission from ref. 9.)
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FIGURE 3. PERSISTENT HOMOLOGY of a packing of particles of 
two diff erent sizes. (a) We place a node at the center of each particle. 
(b) Like the dots of the point cloud in fi gure 2, we center a disk on each of the nodes. The disk 
sizes are heterogeneous, but their radii depend on a single parameter α, which we discuss in 
the text. For the most negative value of α, the smallest disks are points. (c) For some larger 
value of α, the cycle (that is, a 1D hole) in red is born. (d) For some  still- larger value of α, the 
cycle dies. (e) A persistence diagram tracks the birth (αb) and death (αd) coordinates of 
topological features, which are 1D holes in this example. (Adapted with permission from ref. 
12. Licensed under a Creative Commons Attribution [CC BY] license.)
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increase in the number of components, and 
hence in rank(H0), above a threshold force 
that approximately equals the mean inter-
particle force in the system. Computing H0 
and H1 also allows one to quantitatively de-
scribe the eff ects of bidispersity and poly-
dispersity (the presence of particles of three 
or more sizes) and friction on the structure 
of granular force networks. In other studies, 
TDA was used to examine changes in the 
structure of polydisperse granular materials 
with packing fraction, the eff ect of compres-
sion on the relative prevalence of branching 
and compact regions in granular force net-
works, and more.10

In a recent study, Jason Rocks and col-
leagues used PH to systematically explore 
“softness” in amorphous packings of parti-
cles.12 Notions of softness capture the pro-
pensity of particles to rearrange structur-
ally. A good measure of softness should 
allow one to forecast structural rearrangements of particles. 
Using the approach that we illustrate in fi gure 3, Rocks and 
colleagues examined the topological structures of confi gura-
tions at the onset of particle rearrangements in bidisperse 
particle packings and obtained interpretable, topologically 
informed descriptions of packing structure that are experi-
mentally measurable.

Consider the 2D packing of circular particles in fi gure 3a. 
We construct a distance- based simplicial complex that is known 
as an alpha complex. At the center of each particle i, we place 
a disk of radius ri(α) = (Ri

2 + α)1/2, where Ri is the radius of par-
ticle i and α is the fi ltration parameter. In essence, α is an inter-
action radius. When α > 0, the disks are larger than their cor-
responding particles; when α < 0, the disks are smaller than their 
associated particles. For the smallest value of α, we obtain fi gure 
3b. At that minimum interaction radius, we have a point cloud.

The simplicial complex that corresponds to fi gure 3b con-
sists of a set of nodes; these are the particle centers. There are no 
edges, triangles, or higher- dimensional polytopes that connect 
interacting particles. As we increase α, some of the disks over-
lap, and we add the associated polytopes to the alpha complex. 
Analogously to what we saw for Jigglypuff  in fi gure 2, 1D holes 
are born (see fi gure 3c) and then eventually die (see fi gure 3d) 
as α increases.

A persistence diagram (PD) summarizes the births and 
deaths of topological features as a function of a fi ltration pa-
rameter. The PD in fi gure 3e conveys the births and deaths of 
1D holes for progressively larger values of α. The horizontal 
axis of a PD indicates the fi ltration parameter values αb at 
which features are born, and the vertical axis indicates the val-
ues αd at which they die. Features that live longer— that is, that 
are more persistent— lie farther above the diagonal line.

Rocks and colleagues used PDs to quantify the topological 
structure of jammed packings and to connect that structure 
with dynamics.12 Cycles— that is, 1D holes— play an important 
role in their topologically informed descriptions of packing 
structure. The birth value αb measures the length of the longest 
edge in a cycle, and the death value αd indicates the scale of the 
cycle in a packing. The researchers examined PDs for a range 

of system confi gurations. The birth and death values of cycles 
helped them examine the presence and absence of gaps be-
tween particles, which in turn allowed them to quantify local 
rearrangements of particles. The longest edge of a cycle with 
αb < 0 corresponds to a contact between particles, so such a 
cycle consists only of contacts. By contrast, the longest edge of 
a cycle with αb > 0 corresponds to a gap between particles; such 
a cycle may also include some contacts. The more gaps— and, 
hence, fewer contacts— that a particle has with its nearest 
neighbors, the more it participates in local rearrangements.

TDA can also help illuminate phase transitions, such as 
those between amorphous solids and other states. In amor-
phous solids— which include glasses, plastics, and gels— the 
atoms and molecules are not organized as a laĴ ice. In a recent 
study of particle confi gurations in amorphous solids, Yasuaki 
Hiraoka and colleagues computed PH in random networks 
and random packings that they generated from molecular- 
dynamics simulations of various systems, including silica glass 
and copper– zirconium metallic glass.13 They examined hierar-
chical structures in the systems by using PDs to characterize 
1D and 2D homological features. They found that such topo-
logical features can clearly distinguish amorphous- solid states 
from liquid and crystalline states.

Vascular networks
From the unicellular and multinucleate slime mold Physarum 
polycephalum to the xylems of leaves and the circulatory sys-
tems of animals, vascular networks permeate every large- scale 
organism. The structure of a vascular network aff ects numerous 
crucial phenomena, such as the fl ow of water and other liquids, 
the distribution of nutrients in organisms, and the pressure dis-
tributions that drive nutrient fl ow. TDA is a valuable approach 
to study the properties of vascular networks and relate them 
to network function. For example, the computation of PH off ers 
a potential tool for the early detection of subtle changes in mi-
crovasculature that can signify the onset of disease.

Vascular networks have hierarchical features (see fi gure 4) 
and are often dominated by cycles, which help determine sys-
tem organization. Vein- width histograms and other prevalent 
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FIGURE 4. HIERARCHICAL DECOMPOSITION of the vein network of a dicot leaf. 
(a) A small portion of a leaf’s vein network. Each vein segment is an edge of the 
network, and two or more segments intersect at nodes. Removing the thinnest edge 
causes two cycles— that is, 1D holes— to merge and form a single cycle that surrounds 
the light green region. The inset shows the tree graph that is associated with the 
merging. The colors of some of the nodes in the tree indicate their corresponding cycles 
in the leaf. The sequential removal of edges can yield trees with diff erent structures. 
(b) A hierarchical, nested structure that is represented in idealized form by a symmetric 
tree. (c) A nonhierarchical structure that is represented by an asymmetric tree (which we 
depict in an idealized form). (Adapted in part from ref. 15.)
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tools to quantify the structure of vascular networks do not 
capture the hierarchical nature of their connectivity. Topologi-
cal approaches, however, are able to uncover intricacies in the 
networks’ hierarchical organization.

One starts by assigning a weight to each vascular segment, 
which is an edge between two junctions (that is, nodes) in a 
vascular network. Typical choices for edge weights are the 
segments’ radii or conductances. As sketched in fi gure 4a, one 
can use edge weight as a fi ltration parameter by sequentially 
removing edges, starting from the one with the smallest 
weight— that is, the least signifi cant vascular segment— and 
then removing the others in order by weight until fi nally re-
moving the edge with the largest weight. The key in the anal-
ysis is the order in which one removes the edges; the actual 
values of the edge weights are not important.

At each stage of the above hierarchical decomposition, one 
calculates quantities such as the aspect ratios of cycles and 
tracks how they evolve. One can thereby quantify how the cy-
cles in a vascular network are related to each other.14 Vascular 
networks range from highly nested, fractal- like structures (see 
fi gure 4b) to seemingly random structures that are not partic-
ularly hierarchical (see fi gure 4c).15 The traits that one can ex-
amine using such a topological approach complement traits 
that carry information about edge widths, edge lengths, and 
network geometry. Studying topological and geometric fea-
tures enables the algorithmic identifi cation of leaf species from 
leaf fragments.15,16 Such an approach to leaf identifi cation is 
analogous to identifying people from their fi ngerprints.

The conductances of the edges in a network of fl ows, such 
as a vascular network, do not fully determine network function 
on their own. One also needs to know the boundary conditions 
of the fl ows and the sources that drive the fl ows. In the vascular 
system of an animal, for example, it is important to consider 
the location of the heart and how much blood it can pump. If 
one knows the boundary conditions and conductances of the 
edges in a network, one can calculate the pressure that drives 
the fl ow through each edge and the pressure drop along each 
edge. The pressure drops carry information about both net-
work structure and network function, and they provide suffi  -
cient data to examine PH in a fl ow network.17

Start, for instance, with an empty network and add edges 
one at a time in the order of the pressure diff erences along them. 
The pressure diff erence is thus a fi ltration parameter. Adjusting 
it yields a sequence of subnetworks of the original vascular 
network, and computing PH tracks topological changes across 
the sequence of subnetworks. For example, one knows which 
edge additions are birth edges that lead to the formation of new 
network components and which are death edges that merge 
existing components. A PD that records the births and deaths 

of components allows one to determine regions of the original 
vascular network that have relatively low pressure diff erences.

Think of a vascular network as a mountainous landscape in 
which the height of each edge is the pressure diff erence along 
that edge. If we start with an empty network, birth edges cor-
respond to valleys (local minima) in the landscape and death 
edges correspond to the lowest mountain passes between 
neighboring valleys. If we instead start with a complete vascu-
lar network and remove edges one at a time, rather than adding 
them, then birth edges correspond to mountain peaks (local 
maxima) and death edges correspond to the highest mountain 
passes between neighboring peaks.

Rocks and colleagues used such a PH approach to study 
vascular networks that are tuned to deliver specifi c amounts of 
fl ow through particular edges or are tuned to have particular 
pressure drops along some predetermined edges.17 They found 
well- delineated sectors of relatively uniform pressure that are 
not apparent from the underlying network structure. The pres-
sure drops at the boundaries between those sectors revealed 
the pressures to which the networks were tuned.

Harnessing spatial features
Many of the examples that we have discussed are spatial in 
nature. A confounding factor in the use of PH to study spatial 
systems is that although it is able to capture information across 
diff erent scales, traditional distance- based PH constructions can 
have trouble with applications in which diff erences in distance 
scales are less important than other features. For example, in 
human geographical data, traditional PH constructions often 
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FIGURE 5. SPIDERWEBS and their associated persistence diagrams 
(PDs). The webs were produced by (a) a  drug- free spider, (b) a spider 
under the infl uence of LSD, and (c) a spider under the infl uence of 
caff eine. In the PDs, pink disks indicate 0D features (that is, connected 
components) and blue squares indicate 1D features (that is, cycles). 
The spider that is under the infl uence of caff eine appears to have 
produced a particularly abnormal web. (Adapted with permission 
from ref. 18. The  drug- free and caff eine spiderweb images are from 
D. A. Noever, R. J. Cronise, R. A. Relwani, NASA Tech Briefs 19(4), 82, 1995; 
the LSD spiderweb image is from P. N. Witt, Behav. Sci. 16, 98, 1971.)
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detect diff erences in population densities, like those between 
urban and rural areas. They can thereby miss important sig-
nals, such as voting paĴ erns, that are not based on density.

Two of us (Feng and Porter) used PH to study spatial net-
work models, street networks in cities, snowfl akes, and spider-
webs.18 We found it particularly amusing to examine the topo-
logical structure of webs that were built by spiders under the 
infl uence of psychotropic substances (see fi gure 5). The 2D 
images of spiderwebs provided initial surfaces for the con-
struction of a fi ltered simplicial complex based on image ge-
ometry. The simplicial complex took advantage of the physical 
structure of spiderwebs and is also suitable for other images, 
maps, and so on. The topological structures of the spiderwebs— 
and, hence, the resulting PDs— diff ered considerably for spi-
ders that were exposed to diff erent drugs. The spiders that 
were given caff eine or chloral hydrate, a sedative used in sleep-
ing pills, produced particularly abnormal webs.

Outlook
Topological ideas have yielded many insights into the “shape” 
of data in diverse applications. However, many challenges re-
main. A key one is the incorporation of system features, such as 
spatial embeddedness and known physical properties, into the 
construction of simplicial complexes and thus into how one ap-
plies a topological lens. Topological approaches such as PH are 
enabling important advances in the study of physical phenom-
ena, and they promise to yield further insights into condensed- 
maĴ er systems, biophysical systems, and many other areas.
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ASSISTANT PROFESSOR POSITIONS IN PHYSICS
QUEENS COLLEGE OF THE CITY UNIVERSITY OF NEW YORK

The Department of Physics of Queens College of the City University of New York (CUNY) invites appli-

cations for a tenure-track Assistant Professor position in Biophysics, broadly defined, to begin in Fall 

2023. Queens College is one of the flagship research colleges of CUNY and is part of the Doctoral 

Program in Physics of The CUNY Graduate Center. Details about the department and its current re-

search programs are available at physics.qc.cuny.edu. A Ph.D. in Physics or equivalent is required. 

Postdoctoral experience and an established record of publications are strongly preferred. The suc-

cessful candidate will have shown ability to build an independent externally funded research program, 

to collaborate with and complement colleagues from related disciplines, to teach graduate and under-

graduate physics courses, including at an introductory level, and to participate in curriculum devel-

opment, advisement, and other services as needed to benefit the department, college, and university. 

Applicants should submit a cover letter, a CV, a description of research accomplishments and pro-

posed research, as well as a statement on teaching and mentoring the diverse student body at Queens 

College via the site: physics.qc.cuny.edu/apply. In addition, the applicant should arrange for at least 

three confidential letters of reference to be sent by email to physics.search@physics.qc.cuny.edu.

Applications will be reviewed until the position is filled.

CUNY encourages people with disabilities, minorities, veterans and women to apply. At CUNY,

Italian-Americans are also included among our protected groups. Applicants and employees will not 

be discriminated against on the basis of any legally protected category, including sexual orientation or 

gender identity. EEO/AA/Vet/Disability Employer.

CLEMSON
UNIVERSITY

ENDOWED CHAIR IN
MEDICAL BIOPHYSICS

The Clemson University Department of Physics and 

Astronomy, in collaboration with the Department 

of Bioengineering and Prisma Health, invites 

leading scholars to apply to become the founding 

holder of the Dr. Waenard L. Miller, Jr. ’69 and Sheila 

M. Miller Endowed Chair in Medical Biophysics. 

The successful candidate will receive a salary 

commensurate with experience, comprehensive 

resources and benefits, and faculty appointments 

to build innovative programs that elevate Clemson 

University’s prominence in medical biophysics. 

Candidates will possess a vision to tackle major 

challenges in medical biophysics, such as molecular 

and cellular optical imaging and spectroscopy, 

sensing devices, radiation, or computational 

approaches that will impact our fundamental 

knowledge of human health.

APPLY: https://apply.interfolio.com/97767


