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- Mason A. Porter, Michelle Feng, and Eleni Katifori 1

Topological data analysis, which allows systematic
investigations of the “shape” of data, has yielded fascinating
insights into many physical systems.

wealth of complex data is increasingly available in almost every as-
pect of the physical and social world. Such copious data offer the
A potential to help unlock new ways of understanding and manipulat-

ing our surroundings. The demographic characteristics of human

populations convey information about heterogeneous regions of a city

or a country, and our online activities encode data about who we are and what we
do. Networked systems—in people, cities, animals, plants, computers, and more—
are also rich in data, which are present both in their structure and in their dynamics.
The flows of nutrients in vascular structures, the complicated dynamics of fluids, and
the forces in granular materials all provide huge amounts of complex data. Parsing—
and hopefully eventually understanding —such data requires a diverse set of tools.

One family of tools, called topological data anal-
ysis (TDA), employs ideas from the mathematical
field of algebraic topology.! Algebraic topology
gives a framework to rigorously and quantitatively
describe the global structure of a space. By building
on and adapting this framework, researchers in
physics and many other disciplines are increas-
ingly using TDA to examine how the “shape” of
data changes when one views a system at different
scales.? TDA has led to fascinating insights in bio-
physics, granular materials, fluid dynamics, and
many other areas. It has been used to study phase
transitions,® temperature fluctuations in the cosmic
microwave background,* chaotic behavior in non-
linear dynamical systems,” and much more.®

In this article, we present a few examples of
TDA in condensed-matter and soft-matter physics.
We hope that this small selection of TDA research
in physics will help illustrate the flavor of insights

that one can obtain by applying a topological lens
to data.

A few ideas from topology
Topology is a branch of mathematics that concerns
the shapes of objects.! It provides a framework that
describes the properties of an object that stay the
same if we stretch it, shrink it, or bend it without any
tearing or gluing. Consider a circular rubber band.
Because we can stretch the rubber band into an oval,
the circle and the oval are topologically equivalent.
However, the rubber band is not topologically equiv-
alent to a segment of a string: The circular rubber
band has a hole in the middle, but the string does not.
An important aspect of topology is the charac-
terization of the connectedness of objects by count-
ing their numbers of pieces and numbers of holes.
Researchers use that information to group objects
into different types. For example, a doughnut has
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the same number of holes and the same number of pieces as a
coffee cup with one handle (see figure 1), but it is different from
a filled sphere, which has the same number of pieces but does
not have any holes.

Algebraic topology gives a framework to rigorously and
quantitatively describe the global structure of a space. Methods
for characterizing the global structure of a topological space
and objects within it rely on information about the entire space.
If we look at a neighborhood of any point on a sphere, we ob-
tain a surface with the same properties as a plane. By zooming
in extremely closely, we no longer notice the sphere’s curva-
ture. To a human standing on a very large sphere, such as a
planet, the surface appears to be flat. We recover the fact that
the sphere has curvature by considering all of its neighbor-
hoods, but we still don't pick up whether there’s a void inside
the sphere. To fully characterize the structure of a sphere, we
need to consider the entire sphere at once.

To consider an entire object at once, we use the algebraic-
topology concept of homology, which allows us to distinguish
between objects based on their numbers and types of “holes.”
To make this distinction, we need the notion of a topological
space X. Such a space consists of a set of points, along with
neighborhoods of each point, that satisfy certain axioms that
relate them.! Intuitively, we consider neighborhoods of a cer-
tain size around each point and define what it means for the
points to be “close” to each other based on whether their neigh-
borhoods overlap. We do not require a numerical value to
quantify that closeness; we just need to know when neighbor-
hoods overlap. This gives crucial flexibility for using topolog-
ical tools in applications.?

To develop an understanding of homology, it helps to be
more precise. The homology of a topological space X is a set of
topological invariants that are represented by homology
groups H,(X), which describe k-dimensional holes in X. The
rank of H(X) is called the Betti number; it is analogous to the
dimension of a vector space and counts the number of k-
dimensional holes. A feature in H; is zero-dimensional and can
be visualized as a point; the rank of H,, is the number of distinct
connected components in X. Similarly, a feature in H, is one-
dimensional and can be visualized as a cycle (that is, a loop).
A feature in H, is two-dimensional and can be visualized as a
cavity. Researchers also examine H, for larger values of k, but
it is harder to visualize the associated features.

Returning to our filled sphere and our coffee cup, the sphere
consists of one connected component and zero 1D holes—that
is, no cycles—so rank(H,) = 1 and rank(H,) = 0; its zeroth Betti
number is 1 and its first Betti number is 0. By contrast, a coffee
cup has rank(Hy)=1 and, because of its 1D hole, it has
rank(H;) = 1. We can also use homology to distinguish between
a filled sphere and a spherical shell. The former does not have
a cavity, so rank(H,) =0, but the latter does, so rank(H,) = 1.

The shape of data
To identify “holes” in a data set and thereby describe its topolog-
ical “shape,” we need to assign a topological structure to the data
and compute topological invariants. Homology groups are good
invariants because there are efficient algorithms to compute them.
The most widely used tool in TDA is persistent homology
(PH). In PH, one examines homologies across the scales of a data
set.?’ Traditionally, one interprets topological features, such as
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FIGURE 1. TOPOLOGY is a branch of mathematics that concerns
the shapes of objects. The aim of topology is to describe the
properties of an object that stay the same if it is stretched, shrunk,
or bent without any tearing or gluing. A classic joke is that a
topologist cannot tell the difference between a coffee cup and a
doughnut because they both are a single object with a single hole;
that is, they are topologically equivalent. (Courtesy of Henry
Segerman and Keenan Crane; used with permission.)

cycles or cavities, that exist for a large range of scales—that is,
persistent features—as genuine features of a data set and topo-
logical features that exist for only a small range of scales as noise.

To introduce the main idea of PH, let’s start with a collection
of dots (see figure 2). Such an object, called a point cloud, is
commonly studied in TDA.? Point clouds have an inherent 0D
structure, and they thus have few interesting topological prop-
erties when viewed as a finite collection of points. We now
place a ball of some radius ¢ around each point. The scaling
parameter ¢, which is sometimes called a filtration parameter,
allows us to encode geometric information. The balls fill in areas
between points that are close to each other. Essentially, we are
squinting at a point cloud so that it blurs and takes some shape.
The harder we squint—that is, as we increase the value of ¢ —
the more the boundaries of the shape blur and expand. Points
that start out as distinct begin to overlap with each other as ¢
increases, so the notion of what it means to be “close” changes.

Figure 2 demonstrates this idea with the Pokémon known
as Jigglypulff. Jigglypuff starts out as a collection of dots—that
is, a point cloud (figure 2a). As we increase the radius ¢ of the
dots, progressively more of them overlap (figure 2b), and it
becomes easier to identify Jigglypuff. As we continue increas-
ing the radius of the dots, Jigglypuff has progressively fewer
components (that is, rank(H,) decreases) and develops some
1D holes (that is, rank(H,) increases). As € becomes larger, some
holes also disappear (figure 2c), and it becomes harder to iden-
tify Jigglypuff. Eventually, when ¢ becomes sufficiently large,
all of the holes disappear (figure 2d). We can see different fea-
tures of Jigglypulff at different values of ¢. A topological feature
is “born” at the value of ¢ at which it first appears and “dies”
at the value of ¢ at which it disappears.

The images in figure 2 demonstrate how the topological
features that one obtains from a point cloud change as one
views them at different scales. To examine the features system-
atically, one constructs a computationally convenient mathemat-
ical object from such images.” One such object is a filtered sim-



FIGURE 2. THICKENING THE DOTS of a point cloud and observing
the changes in topological structure allows one to study the
persistent homology (PH) of a data set. This figure depicts the
Pokémon known as Jigglypuff, which we draw using dots of various
sizes. As the dots thicken, both the number of connected
components (that is, the 0D features) and the number of loops (that
is, 1D holes, which are also called cycles) change. (a) When the dots
are small, they do not overlap, so there are many components and
no cycles. (b) As the dot size increases, some of the dots start to
overlap, so there are fewer components; some cycles are also “born.”
At first, Jigglypuff becomes easier to discern, but (c) it then becomes
harder to recognize until (d) eventually all of the cycles have “died”
and it is one giant blob. By recording the dot sizes at which each
component and each cycle is born and dies, we can track topological
features in Jigglypuff. This collection of features and dot sizes is the PH
of this thickening of Jigglypuff. (Adapted with permission from ref. 9.)

plicial complex, which is a sequence of simplicial complexes that ~ gives an introduction to the installation, use, and benchmark-
are nested inside each other. A simplicial complex is a space ing of several software packages for it.
that is built from a union of points, edges, triangles, tetrahedra,
and higher-dimensional polytopes. (A polytope is a geometric AmorphOUS and gra nular matter
object with flat faces and edges; it is a generalization of poly- TDA has yielded many insights into granular and amorphous
gons and polyhedra to any number of dimensions.) The word matter. Notions of connectivity and gaps are natural in such
“filtered” describes how simplicial complexes nest inside each  systems,'® and they relate to important physical ideas, such as
other as one varies some parameter, such as the radius of the =~ which parts of a system will fail first and which physical quan-
dots in figure 2. tities to measure to forecast the onset of failure. They are also
Simplicial complexes are topological spaces thatone canuse  relevant for obtaining insights into packing, jamming, and
to approximate other topological spaces in a way that captures  characterizing the different states of a system.
their topological properties. For example, a tetrahedron can Lou Kondic and colleagues used PH to track how simula-
approximate a sphere. There are many choices for how to con-  tions of 2D granular force networks—sets of interparticle con-
struct a filtered simplicial complex. For instance, in figure 2, the  tacts that carry loads that are larger than the mean load of a
simplicial complex is based on distance (the dot size). Foragiven  system—evolve as a system crosses a jamming point."’ They
application, it is desirable to choose a construction that satisfies  used the interparticle force as a filtration parameter. To com-
the intuition that genuine features are also persistent features.  pute H, they determined the distinct components of mutually
The extension of homology to PH allows us to quantify contacting particles that experience forces above that force.
holes in data in a meaningful way. We are interested in per- They associated the jamming transition with a sudden large
sistent holes (and other persistent fea-
tures), such as Jigglypuff’s eyes in fig- e
ure 2, that exist for a large range of
values of an adjustable parameter.
When studying physical system:s, it is
desirable for the parameter to corre-
spond to something physical. Such
homological ideas have been used to
analyze data sets in many applica-
tions.?” The computation of PH has
been especially prominent in neuro-
science,® and it has also been used in
areas such as granular physics, fluid
dynamics, nonlinear dynamics, cos-
mology, string theory, and computer
vision. 0
Introductions to PH and to TDA FIGURE 3. PERSISTENT HOMOLOGY of a packing of particles of BIRTH (a,)
two different sizes. (a) We place a node at the center of each particle.
(b) Like the dots of the point cloud in figure 2, we center a disk on each of the nodes. The disk
sizes are heterogeneous, but their radii depend on a single parameter &, which we discuss in
the text. For the most negative value of @, the smallest disks are points. (c) For some larger
value of @, the cycle (that is, a 1D hole) in red is born. (d) For some still-larger value of a, the
cycle dies. (e) A persistence diagram tracks the birth («,) and death () coordinates of
topological features, which are 1D holes in this example. (Adapted with permission from ref.
12. Licensed under a Creative Commons Attribution [CC BY] license.)

DEATH (ay)

more generally are available for a vari-
ety of audiences. See reference 9 for an
introduction to TDA and PH for teen-
agers and preteens, reference 2 for a
recent review of TDA for a general
physics audience, and reference 1 for
a classic textbook on the mathematics
of TDA. Reference 7 overviews PH and
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increase in the number of components, and
hence in rank(H,), above a threshold force
that approximately equals the mean inter-
particle force in the system. Computing H,

and H, also allows one to quantitatively de-
scribe the effects of bidispersity and poly-
dispersity (the presence of particles of three

or more sizes) and friction on the structure

of granular force networks. In other studies,
TDA was used to examine changes in the |
structure of polydisperse granular materials
with packing fraction, the effect of compres-
sion on the relative prevalence of branching
and compact regions in granular force net-
works, and more."

In a recent study, Jason Rocks and col-
leagues used PH to systematically explore
“softness” in amorphous packings of parti-
cles.”? Notions of softness capture the pro-
pensity of particles to rearrange structur-
ally. A good measure of softness should
allow one to forecast structural rearrangements of particles.
Using the approach that we illustrate in figure 3, Rocks and
colleagues examined the topological structures of configura-
tions at the onset of particle rearrangements in bidisperse
particle packings and obtained interpretable, topologically
informed descriptions of packing structure that are experi-
mentally measurable.

Consider the 2D packing of circular particles in figure 3a.
We construct a distance-based simplicial complex that is known
as an alpha complex. At the center of each particle i, we place
a disk of radius r(@) = (R? + a)"?, where R, is the radius of par-
ticle i and « is the filtration parameter. In essence, « is an inter-
action radius. When a > 0, the disks are larger than their cor-
responding particles; when a <0, the disks are smaller than their
associated particles. For the smallest value of @, we obtain figure
3b. At that minimum interaction radius, we have a point cloud.

The simplicial complex that corresponds to figure 3b con-
sists of a set of nodes; these are the particle centers. There are no
edges, triangles, or higher-dimensional polytopes that connect
interacting particles. As we increase @, some of the disks over-
lap, and we add the associated polytopes to the alpha complex.
Analogously to what we saw for Jigglypuff in figure 2, 1D holes
are born (see figure 3c) and then eventually die (see figure 3d)
as « increases.

A persistence diagram (PD) summarizes the births and
deaths of topological features as a function of a filtration pa-
rameter. The PD in figure 3e conveys the births and deaths of
1D holes for progressively larger values of a. The horizontal
axis of a PD indicates the filtration parameter values «, at
which features are born, and the vertical axis indicates the val-
ues a4 at which they die. Features that live longer —that is, that
are more persistent—lie farther above the diagonal line.

Rocks and colleagues used PDs to quantify the topological
structure of jammed packings and to connect that structure
with dynamics.!? Cycles—that is, 1D holes—play an important
role in their topologically informed descriptions of packing
structure. The birth value a,, measures the length of the longest
edge in a cycle, and the death value o, indicates the scale of the
cycle in a packing. The researchers examined PDs for a range
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FIGURE 4. HIERARCHICAL DECOMPOSITION of the vein network of a dicot leaf.

(@) A small portion of a leaf’s vein network. Each vein segment is an edge of the
network, and two or more segments intersect at nodes. Removing the thinnest edge
causes two cycles—that is, 1D holes—to merge and form a single cycle that surrounds
the light green region. The inset shows the tree graph that is associated with the
merging. The colors of some of the nodes in the tree indicate their corresponding cycles
in the leaf. The sequential removal of edges can yield trees with different structures.

(b) A hierarchical, nested structure that is represented in idealized form by a symmetric
tree. (c) A nonhierarchical structure that is represented by an asymmetric tree (which we
depict in an idealized form). (Adapted in part from ref. 15.)

of system configurations. The birth and death values of cycles
helped them examine the presence and absence of gaps be-
tween particles, which in turn allowed them to quantify local
rearrangements of particles. The longest edge of a cycle with
a,<0 corresponds to a contact between particles, so such a
cycle consists only of contacts. By contrast, the longest edge of
a cycle with a,, > 0 corresponds to a gap between particles; such
a cycle may also include some contacts. The more gaps—and,
hence, fewer contacts—that a particle has with its nearest
neighbors, the more it participates in local rearrangements.

TDA can also help illuminate phase transitions, such as
those between amorphous solids and other states. In amor-
phous solids—which include glasses, plastics, and gels—the
atoms and molecules are not organized as a lattice. In a recent
study of particle configurations in amorphous solids, Yasuaki
Hiraoka and colleagues computed PH in random networks
and random packings that they generated from molecular-
dynamics simulations of various systems, including silica glass
and copper-zirconium metallic glass."”® They examined hierar-
chical structures in the systems by using PDs to characterize
1D and 2D homological features. They found that such topo-
logical features can clearly distinguish amorphous-solid states
from liquid and crystalline states.

Vascular networks

From the unicellular and multinucleate slime mold Physarum
polycephalum to the xylems of leaves and the circulatory sys-
tems of animals, vascular networks permeate every large-scale
organism. The structure of a vascular network affects numerous
crucial phenomena, such as the flow of water and other liquids,
the distribution of nutrients in organisms, and the pressure dis-
tributions that drive nutrient flow. TDA is a valuable approach
to study the properties of vascular networks and relate them
to network function. For example, the computation of PH offers
a potential tool for the early detection of subtle changes in mi-
crovasculature that can signify the onset of disease.

Vascular networks have hierarchical features (see figure 4)
and are often dominated by cycles, which help determine sys-
tem organization. Vein-width histograms and other prevalent



FIGURE 5. SPIDERWEBS and their associated persistence diagrams
(PDs). The webs were produced by (a) a drug-free spider, (b) a spider
under the influence of LSD, and (c) a spider under the influence of
caffeine. In the PDs, pink disks indicate 0D features (that is, connected
components) and blue squares indicate 1D features (that is, cycles).
The spider that is under the influence of caffeine appears to have
produced a particularly abnormal web. (Adapted with permission
from ref. 18. The drug-free and caffeine spiderweb images are from
D. A. Noever, R. J. Cronise, R. A. Relwani, NASA Tech Briefs 19(4), 82, 1995;
the LSD spiderweb image is from P. N. Witt, Behav. Sci. 16, 98, 1971.)

tools to quantify the structure of vascular networks do not
capture the hierarchical nature of their connectivity. Topologi-
cal approaches, however, are able to uncover intricacies in the
networks’ hierarchical organization.

One starts by assigning a weight to each vascular segment,
which is an edge between two junctions (that is, nodes) in a
vascular network. Typical choices for edge weights are the
segments’ radii or conductances. As sketched in figure 4a, one
can use edge weight as a filtration parameter by sequentially
removing edges, starting from the one with the smallest
weight—that is, the least significant vascular segment—and
then removing the others in order by weight until finally re-
moving the edge with the largest weight. The key in the anal-
ysis is the order in which one removes the edges; the actual
values of the edge weights are not important.

At each stage of the above hierarchical decomposition, one
calculates quantities such as the aspect ratios of cycles and
tracks how they evolve. One can thereby quantify how the cy-
cles in a vascular network are related to each other.™* Vascular
networks range from highly nested, fractal-like structures (see
figure 4b) to seemingly random structures that are not partic-
ularly hierarchical (see figure 4c).” The traits that one can ex-
amine using such a topological approach complement traits
that carry information about edge widths, edge lengths, and
network geometry. Studying topological and geometric fea-
tures enables the algorithmic identification of leaf species from
leaf fragments.”>'® Such an approach to leaf identification is
analogous to identifying people from their fingerprints.

The conductances of the edges in a network of flows, such
as a vascular network, do not fully determine network function
on their own. One also needs to know the boundary conditions
of the flows and the sources that drive the flows. In the vascular
system of an animal, for example, it is important to consider
the location of the heart and how much blood it can pump. If
one knows the boundary conditions and conductances of the
edges in a network, one can calculate the pressure that drives
the flow through each edge and the pressure drop along each
edge. The pressure drops carry information about both net-
work structure and network function, and they provide suffi-
cient data to examine PH in a flow network."”

Start, for instance, with an empty network and add edges
one at a time in the order of the pressure differences along them.
The pressure difference is thus a filtration parameter. Adjusting
it yields a sequence of subnetworks of the original vascular
network, and computing PH tracks topological changes across
the sequence of subnetworks. For example, one knows which
edge additions are birth edges that lead to the formation of new
network components and which are death edges that merge
existing components. A PD that records the births and deaths
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of components allows one to determine regions of the original
vascular network that have relatively low pressure differences.

Think of a vascular network as a mountainous landscape in
which the height of each edge is the pressure difference along
that edge. If we start with an empty network, birth edges cor-
respond to valleys (local minima) in the landscape and death
edges correspond to the lowest mountain passes between
neighboring valleys. If we instead start with a complete vascu-
lar network and remove edges one at a time, rather than adding
them, then birth edges correspond to mountain peaks (local
maxima) and death edges correspond to the highest mountain
passes between neighboring peaks.

Rocks and colleagues used such a PH approach to study
vascular networks that are tuned to deliver specific amounts of
flow through particular edges or are tuned to have particular
pressure drops along some predetermined edges.” They found
well-delineated sectors of relatively uniform pressure that are
not apparent from the underlying network structure. The pres-
sure drops at the boundaries between those sectors revealed
the pressures to which the networks were tuned.

Harnessing spatial features

Many of the examples that we have discussed are spatial in
nature. A confounding factor in the use of PH to study spatial
systems is that although it is able to capture information across
different scales, traditional distance-based PH constructions can
have trouble with applications in which differences in distance
scales are less important than other features. For example, in
human geographical data, traditional PH constructions often
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detect differences in population densities, like those between
urban and rural areas. They can thereby miss important sig-
nals, such as voting patterns, that are not based on density.

Two of us (Feng and Porter) used PH to study spatial net-
work models, street networks in cities, snowflakes, and spider-
webs.'® We found it particularly amusing to examine the topo-
logical structure of webs that were built by spiders under the
influence of psychotropic substances (see figure 5). The 2D
images of spiderwebs provided initial surfaces for the con-
struction of a filtered simplicial complex based on image ge-
ometry. The simplicial complex took advantage of the physical
structure of spiderwebs and is also suitable for other images,
maps, and so on. The topological structures of the spiderwebs —
and, hence, the resulting PDs—differed considerably for spi-
ders that were exposed to different drugs. The spiders that
were given caffeine or chloral hydrate, a sedative used in sleep-
ing pills, produced particularly abnormal webs.

Outlook

Topological ideas have yielded many insights into the “shape”
of data in diverse applications. However, many challenges re-
main. A key one is the incorporation of system features, such as
spatial embeddedness and known physical properties, into the
construction of simplicial complexes and thus into how one ap-
plies a topological lens. Topological approaches such as PH are
enabling important advances in the study of physical phenom-
ena, and they promise to yield further insights into condensed-
matter systems, biophysical systems, and many other areas.
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