BACK SCATTER Blu-ray microscope with blood-cell lens A traditional light microscope can have a large field of view with poor Biological samples were affixed atop the transparent rotating disk in the resolution or a small field of view with good resolution but not both. To photo, and the blood-coated sensor was mounted on the translation address that limitation, Guoan Zheng at the University of Connecticut stage of the player. As the disk rotated, the Blu-ray player's 405 nm laser and his colleagues developed a high-resolution computational biolens. illuminated the samples. The resulting coherent diffraction patterns from They smeared a monolayer of blood cells on top of an image sensor and the biological samples were recorded by the blood-coated sensor. At the fixed the cells in place with alcohol. The blood-cell layer redirects light heart of the image-reconstruction process is a lensless coherentdiffracted at a large angle by an object of interest to smaller angles that diffraction-imaging algorithm termed rotational ptychography. (For reach the image sensor. Previously inaccessible high-resolution details more on ptychography, see the article by Manuel Guizar-Sicairos and can then be acquired using the sensor's pixel array underneath the Pierre Thibault, Physics Today, September 2021, page 42.) A model of the blood-cell layer. The biolens's field of view is limited only by the size of spinning disk and light diffraction recovers the high-resolution sample the silicon chip for the image sensor, which can be as large as 36 mm by image with both intensity and phase information. In a proof of concept, 24 mm. the researchers monitored live bacterial cultures across an entire 35 mm The microscope prototype shown here was built using a modified petri dish and resolved individual cells. (S. Jiang et al., ACS Sens. 7, 1058,

2022; photo courtesy of Guoan Zheng.)

Blu-ray player, which makes it inexpensive, compact, and portable.