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Experimental methods to imitate extra spatial dimensions reveal new

physical phenomena that emerge in a  higher- dimensional world.
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But what is a fourth spatial dimension? In nonrelativistic
physics, in which space and time are distinct, a spatial dimen-
sion is simply a direction along which objects can move both
forward and backward (unlike time, which always flows from
past to future). The number of relevant spatial dimensions in
a system is defined by the directions along which spatial mo-
tion can take place or, alternatively, the number of spatial
 coordinates— for example, (x, y, z)—that must be specified to
define where an object is at a particular moment in time.

The number of spatial dimensions can be reduced by con-
straining a system. For example, threading a bead onto a long,
straight wire limits the bead to move in only one spatial dimen-
sion: either forward or backward along the wire. A single co-
ordinate gives the bead’s position along the wire at any given
moment.

What would happen, then, with an increase in the number
of spatial dimensions to four or more? Theoretical physicists
can simply extend familiar physical equations to an enlarged
set of spatial  coordinates— for example, (x, y, z, w). Often that
extension leads to no new phenomena. But in certain fields of
physics, new effects are predicted to emerge, such as  so- called
topological insulators, which are the primary source of inspi-
ration for efforts to simulate 4D physics experimentally. This
article delves into what 4D physics is and how experimental
tricks to mimic 4D space work.

Topological insulators
The transfer of topological concepts from mathematics to
physics has deepened researchers’ understanding of states of
matter and led to the discovery of a plethora of exotic topolog-
ical materials. In mathematics, topology is most famously a
framework to classify different surfaces. For example, donuts
belong to the family of surfaces with one hole, whereas oranges
belong to the family with no holes. If one smoothly squishes
an orange, its shape deforms, but it cannot take the shape of a

donut without tearing a new hole and
thereby changing the topology, in that
case quantified by an index known as
the genus. Other mathematical prob-
lems have many other sorts of topo-
logical indices, such as the family of
 so- called Chern numbers, which are
discussed later.

In physics, topological indices lie
at the heart of electrical, optical, and
other behaviors in many materials.1 In
particular, they often classify elec-
tronic energy bands in a crystal. When
nontrivial, those indices guarantee

special properties, such as the existence of currents circulating
around the edge of a material despite the bulk remaining
 insulating— as in the aptly named topological insulator. Simi-
lar to the genus of a squishable orange, the indices are hard to
change, so topological properties, such as those special edge
currents, can be remarkably robust even in the face of disorder,
as long as the bulk remains insulating.

Spatial dimensionality changes the nature of topological in-
sulators and their edge currents. As depicted in figure 1, a 2D
topological insulator has effectively 1D conducting edge chan-
nels, whereas a 3D topological insulator is covered with 2D
conducting surfaces. Similarly, a 4D topological insulator
should be an unusual material with robust 3D conducting sur-
face volumes. What’s more, not only the edge behavior but also
the underlying physics and the definitions of topological in-
dices depend on the spatial dimensionality and symmetries of
the system.1

Quantum Hall effects
The story of 4D topological insulators starts with the 2D quan-
tum Hall effect, discovered in 1980 by Klaus von Klitzing of the
Max Planck Institute for Solid State Research in Stuttgart, Ger-
many. That research earned him the 1985 Nobel Prize in Physics.

As the name suggests, the 2D quantum Hall effect is intrin-
sically a 2D phenomenon, first observed in an effectively 2D
electron gas moving in a  high- quality semiconductor het-
erostructure.1 In his seminal experiment, von Klitzing exposed
 silicon- based heterostructures to low temperatures and high
 out- of- plane magnetic fields. He then flowed a current through
his device and measured the voltage across it to find the Hall
conductance. What he found was unexpected: The conduc-
tance exhibited robust plateaus that were precisely quantized
by integer multiples of e2/h, where e is the electron charge and
h is Planck’s constant. In fact, that quantization is so robust
and precise that it became part of the 2019 redefinition of the

W
hat would the universe be like if it had four spatial di-
mensions instead of three? Experimentalists are start-
ing to explore the physics of higher dimensions with
the help of recently developed tricks that synthetically
mimic an extra fourth dimension in platforms such as

ultracold atoms, photonics, acoustics, and even classical electric cir-
cuits. Although any such trick necessarily has limitations, as the
fourth spatial dimension is always artificial, those approaches have
proven that they can simulate some  four- dimensional effects in con-
trolled experimental systems.
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 kilogram in SI units. (See the article by Wolfgang Ketterle and
Alan Jamison, PHYSICS TODAY, May 2020, page 32.)

In 1982 David Thouless of the University of Washington in
Seattle and his colleagues showed that the origins of the 2D
quantum Hall effect lie in the topological nature of the elec-
tronic energy bands. That realization was, in part, why Thou-
less was awarded a share of the 2016 Nobel Prize in Physics.
The integer in the Hall conductance is related to a 2D topolog-
ical index called the first Chern number, which guarantees the
existence of topological currents around the edge of the mate-
rial1 (see figure 1 and box 1). In other words, a 2D quantum
Hall system is an example of what would now be called a topo-
logical insulator, with the robustness of the Hall conductance
being one of its key experimental signatures.

After the discovery of the 2D quantum Hall effect, theorists
suggested that certain 3D materials would also have bands
characterized by first Chern numbers, except in that case a triad
of them: one for each of the three Cartesian planes of the 3D
material. The theorized 3D quantum Hall effect was indeed ob-
served experimentally in 2019 in bulk zirconium pentatelluride
crystals.2 But the 3D quantum Hall effect is what’s often re-
ferred to as a weak topological phenomenon because key prop-
erties, such as the first Chern numbers, remain essentially 2D
concepts even though the system is 3D. The resulting topolog-
ical behavior can thus sometimes be less robust.

In four spatial dimensions, however, a fundamentally dif-
ferent type of quantum Hall effect was proposed in the early
2000s by Jürg Fröhlich and Bill Pedrini from ETH Zürich in
Switzerland and independently by  Shou- Cheng Zhang and
Jiangping Hu of Stanford University.3 That 4D quantum Hall
effect has a different form of quantized Hall conductance from
its 2D cousin and is instead related to a 4D topological invariant
called the second Chern number, which creates 3D conducting
surface volumes, as shown in figure 1.

To date, various 4D quantum Hall models have been pro-
posed.3–5 Some, similar to the 2D quantum Hall effect, describe
charged particles in magnetic fields. Others, such as that of Zhang
and Hu, exploit the physics of a  Yang– Mills gauge field, as ex-
plained in box 2, and take inspiration from particle physics.

The 4D quantum Hall effect is not the end of the story. Over
the past 20 years, other quantum Hall effects have been pre-
dicted in 6D and 8D systems, while many other families of 2D
and 3D topological insulators have been discovered that require

topological invariants other than Chern numbers.1 Mathemat-
ical classifications categorizing topological phases of matter up
to arbitrary numbers of spatial dimensions also suggest other
 higher- dimensional phenomena waiting to be uncovered.6

Not just electrons
Bringing the physics of higher dimensions into the laboratory
requires thinking beyond  solid- state  materials— where the 2D
and 3D quantum Hall effects were  observed— to other more
controllable platforms.

Although originally associated with electronic transport,
many topological properties are now understood instead to
stem from band theory and the general physics of waves.5 In
other words, a topological index, such as the first Chern num-
ber, also applies to ultracold atoms, classical waves of light, me-
chanical oscillations, and waves on the ocean surface, to name
just a few possibilities.

Intuitively, classical waves or noninteracting bosons
shouldn’t be called topological insulators, because without the
Pauli exclusion principle or other effects to fill up the states in
an energy band, those systems will not be insulating in the
usual sense. The current convention, however, is to use the
term topological insulator whenever the physics derives from
energy bands with  well- defined topological indices.5

Probing the topological physics of nonelectronic systems re-
quires different experimental methods because those systems
no longer have robust quantized plateaus in the Hall conduc-
tance. For  wave- based systems, the most important experimen-
tal signature is instead typically the existence of robust modes
localized on the system’s surface at frequencies forbidden to
penetrate the bulk. In those cases for a given frequency, waves
can propagate on the surfaces but not in the bulk, as sketched
in figure 1. Such topological protection may someday be useful
for applications such as photonics devices because it provides
a way to robustly guide light around any disorder and imper-
fections introduced during device fabrication.5

The expansion into nonelectronic platforms has also been
advantageous for the study of topological phenomena (see
“Topological insulators: from graphene to gyroscopes,” PHYSICS
TODAY online, 27 Nov 2018). Many of those platforms are easier
to engineer than real materials and have thus allowed scientists
to explore beyond what is currently accessible in  solid- state
physics.5 As part of the push, researchers have developed ex-
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FIGURE 1. TOPOLOGICAL INSULATORS in two, three, and four dimensions conduct on their edges or surfaces (light gray) despite an
 insulating bulk (violet). That unusual behavior results from the topology of the electronic band structure. In 3D and 4D systems, the
 conducting surfaces are depicted lifted off the bulk to show it and the surface simultaneously. The 4D topological insulator is shown as
 several separate 3D cuts along the fourth dimension.



perimental tricks to mimic extra dimensions, in part to probe
 higher- dimensional topological insulators. Three main ap-
proaches are topological pumping, connectivity, and synthetic di-
mensions, although other schemes are also under development.

Topological pumping
One of the earliest but perhaps most abstract tricks to mimic
higher dimensions is topological pumping, which Thouless
first proposed in 1981 as a method to realize the 2D quantum
Hall effect. He predicted that slowly tuning the parameters of
certain types of 1D quantum systems could robustly pump par-
ticles across the system.1

The simplest example starts with an insulator in which par-
ticles occupy every minimum of a 1D chain of periodic poten-
tial wells. If the overall potential’s location in space is then slowly
tuned such that the entire crystal slides along the chain, the re-
sulting motion of the minima drags the particles along with it.
Thouless calculated not only that such robust particle transfer
was a product of a topological invariant but that the invariant

was the same 2D  index— the first Chern  number— as in the 2D
quantum Hall effect. The result suggested that, in a sense, a 1D
topological pump is a dynamic version of the 2D quantum Hall
effect, as has since been explored experimentally.

Going from one dimension to two dimensions may seem
quite far from  higher- dimensional physics. But in 2013 Yaacov
Kraus of the Weizmann Institute of Science in Israel, Zohar
Ringel of Oxford University in the UK, and Oded Zilberberg
of ETH Zürich predicted that a 2D topological pump would be
related to the 4D topological  index— the second Chern
 number— of the 4D quantum Hall effect.4

The prediction proved correct in 2018 in two complemen-
tary experiments led by Zilberberg. One he conducted in pho-
tonics with the team of Mikael Rechtsman at the Pennsylvania
State University; the other was in cold atoms with the team of
Immanuel Bloch at the Max Planck Institute of Quantum Op-
tics and the  Ludwig- Maximilians University Munich in Ger-
many and my collaboration at the University of Birmingham.7

Those experiments identified signatures of the 4D quantum
Hall effect in the propagation of
light around the edge of a wave-
guide array and in the net mo-
tion of atoms across a system,
respectively, and have since been
extended by other groups to
acoustic platforms.

Topological pumping has
many intrinsic limitations be-
cause it is essentially a mathe-
matical trick based on slicing up
a  higher- dimensional model in
a clever way. In reality, the par-
ticles are only ever able to move
in the  lower- dimensional sys-
tem and do not have the full

What is the origin of the  two- dimensional quantum
Hall edge current? Classically, when a charged particle
confined to 2D motion experiences an  out- of- plane
magnetic field B, it executes closed cyclotron orbits in
the bulk (dark blue circle), but  one- way skipping orbits
along the boundary of the box (light blue arrows). Even
if the boundary is deformed, those skipping orbits
keep moving in the direction dictated by the orienta-
tion of the magnetic field. Quantum mechanically, that
behavior translates to the characteristic insulating bulk
energy bands and robust conducting edge states of a
topological insulator.

BOX 1. SKIPPING ALONG THE EDGE
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FIGURE 2.  HIGHER- DIMENSIONAL LATTICES can be constructed in  lower- dimensional systems. On the left, a  two- dimensional discrete
lattice model is composed of lattice sites (circles) with connections (lines). That same lattice can be effectively embedded into one dimension
provided the same connectivity is maintained. On the right, that embedding trick was used to encode a 4D lattice into this 3D stack of circuit
boards. (Photo from ref. 9.)
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freedom of higher dimensions. Something closer to real higher
dimensions may be possible through other types of experimen-
tal schemes.

Electrical circuit connectivity
The second method to simulate higher spatial dimensions is
based on the idea of connectivity, which can be understood by
starting with discrete lattice models. In those models, particles
can exist only on a set of lattice sites. Those sites can be repre-
sented as a set of discrete points distributed in space, as shown
in figure 2. Depending on the model specifics, particles can hop
between pairs of lattice sites, as indicated by the dashed lines.
Such discrete lattice models are common approximations for
real systems, including electrons moving through a  solid- state
material and an electrical current moving around a circuit.
They can also identify and isolate the essential ingredients of
phenomena.

The key point for understanding  higher- dimensional simu-
lations is that a discrete lattice model is essen-
tially a network of nodes, as in lattice sites, and
connections, as in allowed hops. That perspective
reveals that it does not matter where the nodes
are physically located in real space, provided
that all the connections are the same.

For example, the 2D square lattice in figure 2
can transform to a 1D chain if each row of sites
is laid out end to end. So long as the same types
of connections exist between sites, the system
will obey the same mathematical equations as be-
fore. In a sense, the process embeds the 2D model
into a 1D  scheme— albeit a strange 1D scheme, in
which some  short- range connections are absent,
while other  long- range connections appear.

The same idea extends to  higher- dimensional
lattices  too— for example, creating a 4D lattice
model with a 3D or 2D scheme. The embedding
trick therefore offers a recipe for realizing a 4D
lattice model in a real physical system, but with
the challenge of engineering complicated connec-
tions between sites.

In an early proposal from 2013, Dario Jukić and Hrvoje Bul-
jan from the University of Zagreb in Croatia envisioned simu-
lating a discrete 4D lattice with photonic waveguides.8 Since
then, research interest has focused on more flexible systems,
such as electrical circuits, with various proposals for how lat-
tice sites composed of inductors, capacitors, and resistors can
be wired together to realize 4D topological models.

In 2020 You Wang, Baile Zhang, and Yidong Chong of the
Nanyang Technological University in Singapore and I applied
the approach for the first time experimentally, as shown in fig-
ure 2. We created a small 4D topological lattice of 144 sites em-
bedded in an electrical circuit.9 In the experiment, we designed
a stack of 3D circuit boards and wired them together to match
a 4D discrete lattice model for the 4D quantum Hall effect. As
predicted for a 4D topological insulator, we observed that cur-
rents flowed through the sites that would be on the surface of
the 4D topological insulator but not through the bulk.

Those electrical circuit experiments do have limitations be-
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FIGURE 3. SYNTHETIC DIMENSIONS turn atomic spin  states— or other internal states or intrinsic  properties— into something similar to 
a spatial dimension. A  two- dimensional discrete lattice model (left) comprises one real spatial dimension and one synthetic dimension
 composed of atomic spin states. Hopping along the real dimension (solid lines) corresponds to real atomic motion, whereas hopping along
the synthetic dimension (dashed lines) corresponds to  laser- induced transitions between spin states. The unit cell of a 4D hypercubic lattice
(right) is a tesseract. Such shapes can be crafted with a suitable combination of real and synthetic spatial dimensions.

One way to think about topological
pumping is that it replaces some of the
real spatial dimensions in the Hamil-
tonian with externally controlled param-
eters. But if all the spatial dimensions
are swapped for externally controlled
parameters, then no real spatial degrees
of freedom are required to simulate
higher dimensions.

In 2018 Seiji Sugawa, Ian Spielman,
and their colleagues at the Joint Quan-
tum Institute and the University of Mary-
land in College Park used that type of
approach. Inspired by the work of  Shou-
 Cheng Zhang and Jiangping Hu on the
4D quantum Hall effect,4 the researchers
experimentally simulated what’s known
as a Yang monopole in an effective 5D
parameter space created by coupling

four internal states of an atomic quan-
tum gas.16 Similar to how Paul Dirac
postulated the hypothetical magnetic
monopole as a source for the mag-
netic field, the Yang monopole is pro-
posed as the source of a  Yang– Mills
gauge field in five dimensions. Sugawa,
Spielman, and their colleagues mapped
out the properties of the simulated
monopole and verified that it is charac-
terized by the second Chern number,
as predicted.

More recently, in 2020, similar ex-
perimental approaches have simulated
 so- called 4D tensor monopoles, which
are postulated as the sources of tensor
gauge fields and are characterized by
an exotic topological index called the
 Dixmier– Douady invariant.14

BOX 2. EXOTIC MONOPOLES

FOUR-DIMENSIONAL PHYSICS
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cause they typically cannot access the whole energy spectrum
of states at once. They are also classical systems, which cannot
exhibit quantum effects. Nevertheless, the simplicity of manu-
facturing electrical circuits and their flexibility make them a
fruitful avenue to explore 4D physics.

Synthetic dimensions
The final  trick— synthetic  dimensions— gets closest to gen-
uinely simulating particles moving in four dimensions. The
method interprets some set of a system’s internal states or in-
trinsic properties as lattice sites along an imaginary extra di-
mension.5 By combining that strategy with other real or synthetic
dimensions, it has the potential to realize  high- dimensional lat-
tice models.

To get a feel for how the trick works, consider the example
of a gas of identical atoms trapped in a vacuum chamber and
cooled close to absolute zero. Each atom has various possible
internal atomic spin states, which correspond to different con-
figurations of its constituent electrons and nucleus. Shining
suitable lasers onto an atom can stimulate a sequential transi-
tion between those internal states, as sketched in figure 3. As
those transitions happen, the atom’s  spin- state label changes
 step- by- step, similar to how a discrete spatial coordinate
changes when particles hop between lattice sites. That analogy
is powerful and effective, and it reframes different spin states
as spanning a synthetic dimension.

The idea of synthetic dimensions of atomic spin states orig-
inated in 2012 in work by Octavi Boada and José Ignacio Latorre
at the University of Barcelona in Spain and Alessio Celi and
Maciej Lewenstein at the Institute of Photonic
Sciences in Barcelona.10 The same idea was ex-
tended three years later to a discrete 2D quan-
tum Hall lattice model with one real dimen-
sion and one synthetic dimension realized in
 cold- atom experiments, explained in box 3. In
the future, the approach may be pushed even
further to realize 4D topological models.5

Since 2015 the field of synthetic dimen-
sions has expanded dramatically. One promi-
nent innovation was to swap spin states for
atomic momentum states in cold atoms. The
momentum states can be coupled into a syn-
thetic dimension by pulsing a standing wave
of light, which kicks the atoms and changes
their momenta by quantized amounts along
the wave’s direction.5 Ulrich Schneider’s group
at the University of Cambridge in the UK re-
cently extended that approach to four sepa-
rate standing waves of light at once, each one
pointing along a different direction in the 2D
plane. The feat engineered up to four synthetic
dimensions simultaneously.11 Although not
yet topological, the results of the experiment
could be interpreted in terms of atoms hop-
ping on a 4D hypercubic lattice, as shown in
figure 3, that is composed of momentum states.

Photonics has also undergone significant
recent developments in synthetic dimensions.
Most notable are two schemes: one in which
the synthetic dimension is formed from the

frequency modes of a ring cavity and the other in which it’s
formed from the lattice modes of a waveguide array. Shanhui
Fan at Stanford University and his colleagues demonstrated
two simultaneous independent synthetic dimensions based on
frequency modes in a single photonic cavity.12 Mordechai
Segev’s group at the  Technion– Israel Institute of Technology in
Haifa proposed and developed experiments based on lattice
modes, which have already revealed both 2D and 3D topolog-
ical edge physics with a synthetic dimension.13 Both ap-
proaches may someday lead to realizations of 4D topological
insulators.

Opening up higher dimensions
Despite so much progress over the past few years, experiments
simulating 4D physics are still in their early stages. Topological
pumps have successfully employed mathematical tricks to ob-
serve signatures of 4D effects, but they cannot completely cap-
ture 4D dynamics. Electrical circuits can capture the full con-
nectivity of a 4D topological lattice, but they have not yet
provided full access to 4D physics. In the future, all those lim-
itations will hopefully be overcome by synthetic dimensions,
in which particles may be able to move as if in 4D space.

Synthetic dimensions may also reveal new ways to think
about the 3D world. After all, a synthetic dimension consists
of coupling together existing physical degrees of freedom. For
example, creating a synthetic dimension of optical frequency
modes involves controlling the frequency of light, whereas
finding topological edge currents in such a setup is about iden-
tifying a new mechanism to robustly channel light or convert

In 2015 the groups of Leonardo Fallani and Massimo Inguscio at LENS (the European
Laboratory for Nonlinear Spectroscopy) and the University of Florence and of Ian
Spielman at the Joint Quantum Institute and the University of Maryland in College
Park both realized a  two- dimensional quantum Hall system made of a real spatial
dimension and a synthetic dimension of three atomic spin states,17,18 similar to those
in figure 3. As shown here (adapted from reference 17), the systems exhibited the
key signature of Hall physics: skipping orbits along the edge of the system, analo-
gous to those of a charged particle in a magnetic field, as explained in box 1.

BOX 3. SKIPPING IN A SYNTHETIC DIMENSION
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its frequency. By giving an alternative viewpoint for under-
standing and designing complex systems, synthetic dimen-
sions may, in the long term, lead to applications in optical iso-
lators or the spectral manipulation of light, for example.5,12

In terms of fundamental science, much more 4D physics is
left to explore. The topics in this article are all  single- particle
physics, in that  particle– particle interactions are negligible.
Only a few steps have been taken in the theoretical understand-
ing of 4D phenomena, such as Zhang and Hu’s proposed gen-
eralization3 of the 2D fractional quantum Hall effect to four
dimensions. Understanding what  many- body physics might
emerge in higher dimensions and whether those phenomena
can be accessed with current experimental tricks requires fur-
ther work.

From the experimental point of view, a future challenge is
that  particle– particle interactions naturally depend on the par-
ticle separation in the real 3D world rather than in the synthetic
4D system.5 In the case of synthetic dimensions, for example,
two atoms in different spin states often interact strongly so long
as they occupy the same physical location. Those interactions
correspond to strange nonlocal interactions along the synthetic
dimension. Researchers are developing various approaches to
understand and tackle such problems.

Finally, although the simulation of 4D physics started with
the 4D quantum Hall effect, the field should flourish far beyond
that effect in the future. Recent experiments have already
shown other topological effects, such as the exotic 4D tensor
monopoles14 described in box 2. Other experimental tricks are
also in development, including schemes based on using mul-

titerminal Josephson junctions to replace spatial degrees of
freedom with superconducting phases.15 In the near future,
more 4D physics will be simulated in the laboratory.
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