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C
artographers have long contended 
with the distortions in a map when 
the curved  two- dimensional surface 

of Earth is projected onto a flat plane. The 
Mercator projection, for example, makes 
landmasses and other features far from 
the equator appear larger than they really 
are.  Equal- area projections, on the other 
hand, distort the shapes of geographic 
features.

When curved surfaces are flattened, 
wrinkles form because of the mismatch 
in lengths on a curved surface and those 
on a flat plane. Nonlinear mechanics and 
 tension- field theory do a good job of de-
scribing wrinkles made by tension acting 
on a  shell— that is, a curved sheet. The 
tension partially stabilizes the crests and 
troughs of a wrinkle. But the approach 
fails to explain why wrinkle patterns ap-
pear when there’s no external tension at 
all, such as when an elastic sheet that’s 
just a few tens of nanometers thick is 
confined to a spherical substrate.

Ian Tobasco (University of Illinois at 
Chicago), Joseph Paulsen (Syracuse Uni-
versity), Eleni Katifori (University of Penn-
sylvania), and their colleagues recently 
considered the issue from a mathemati-
cal angle. The simple set of geometric 
rules they developed are an exact solu-
tion for the wrinkle patterns formed on 
flattened, curved sheets. Reassuringly, the 
rules’ predictions agree with numerous 
experiments and simulations.1

Isosceles triangles
For the last several years, the researchers 
had been independently studying wrin-
kle patterns in shells. In 2017, for exam-
ple, Desislava Todorova and others in 
Katifori’s group found that the wrinkle 
patterns that form on thin elastic sheets 
share similar physics to  stripe- patterned 
liquid crystals.2 Around the same time, 
Graham Leggat and Yousra Timounay, 
working in Paulsen’s group, succeeded 
in manufacturing ultrathin curved sheets 
in the lab. And Tobasco was beginning 
to develop a mathematical framework to 
explain the phenomena.

“But the bigger story started to emerge 
once we crossed paths at a SIAM [Society 
for Industrial and Applied Mathematics] 
meeting in summer 2018,” says Paulsen. 
“We realized that our ideas and results 
could be combined into something larger.” 
The collaboration considered the wrin-
kles that would form on a shape that was 
cut out of a thin curved sheet and then 
confined to a planar liquid surface. Some 
regions of the sheets had ordered repeat-
ing structures and others, like those in 
figure 1, were more disordered.

Despite the seeming complexity of 
the wrinkles, the researchers found that 
the patterns could be predicted using two 
rules. For  negative- curvature  shells— 
think of a horse saddle, for  example— the 
first rule predicts that wrinkles form 
along line segments perpendicular to 
the shell boundary, as shown in blue in 
figures 2a and 2d. The wrinkles meet 

along the medial axis, defined as the set 
of points that have two or more closest 
edge points. Notably, those segments 
make up the equal legs of isosceles trian-
gles (figures 2b and 2e).

The second rule predicts that for globes 
and other  positive- curvature surfaces 
(figures 2c and 2f), wrinkles form along 
the opposite legs (yellow) of the isosceles 
triangles. As a result, the wrinkle patterns 
in positively and negatively curved sheets 
are related: The pattern in one shell can 
be used to deduce that of its oppositely 
curved twin. “This reciprocal relation-
ship was one of the most surprising ob-
servations,” says Tobasco.

The isosceles triangles predict the lo-
cation of the areas with ordered wrinkle 
patterns, even for nonuniformly curved 
surfaces, like an egg. The exact ampli-
tude of the wrinkles’ crests and troughs 
depends on the shell’s specific curvature 

The behavior of thin curved sheets is ironed out
Two simple geometric rules 
predict the wrinkle patterns 
of curved surfaces that are 
flattened.

FIGURE 1. RANDOM WRINKLES formed on this thin sheet with a diameter of 42 mm. 
It was cut from a curved elastic sphere with a radius of curvature of 77 mm before 
being placed on a flat liquid surface. Other shapes form ordered wrinkle patterns. 
Both types of patterns can now be predicted with a simple pair of geometric rules. 
(Courtesy of Monica Ripp, Paulsen Lab, Syracuse University.)
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and some other parameters, but the over-
all layout of the wrinkle pattern depends 
only on the sign of the curvature.

Disordered wrinkle patterns also fol-
low the rules. The disordered areas are 
reciprocally related to a point on the me-
dial axis that has three or more closest 
boundary points, and the area is bounded 
by the yellow polygon in figures 2e and 2f. 
Although the statistics of the disordered 
patterns can’t be predicted, the geomet-
ric rules do identify their locations on the 
cutout shape.

Smashed glass
To test the predictions of the new 
 geometry- based rules, Paulsen, Leggat, 
and Timounay  spin- coated polystyrene 
films onto curved glass surfaces. Then 
they observed the wrinkles that formed 
when curved sheets of various shapes 
were cut from the films and subsequently 
placed over a flat liquid surface.

“We started working with concave 
glass lenses, which are well controlled 
and could be purchased in a variety of 
curvatures,” says Paulsen. “However, it 
turned out to be very difficult to separate 
the shells from these surfaces. So we had 
to develop a protocol for peeling the film 
off the substrate without tearing it or 
damaging it in any way.”

Another challenge was making a neg-
atively curved shell. “It seems simple 
at  first— you can just  spin- coat onto a 
 saddle- shaped substrate. But we could 
not find a  well- controlled glass substrate 
with uniform curvature,” says Paulsen.

Once Tobasco predicted that the pat-
terns depend only on the sign of the cur-
vature, though, more substrate options 
became available. The spout of a labora-
tory beaker, for example, has negative 
curvature. Paulsen recounts that “Yousra 
put a glass beaker in a plastic bag, smashed 
it, and carefully selected a shard that 
could be used to  spin- coat a film on. She 
formed films on this shard, floated them 
onto water, and the wrinkle patterns 
matched the theory beautifully!”

Coverage maximization
In a mathematical paper published last 
year, Tobasco showed that, in a limit where 
the wrinkles are infinitely fine, the wrin-
kle patterns could be derived as a conse-
quence of the curved sheet trying to cover 
as much of the liquid surface as possible.3 
That coverage maximization is driven by 
energy minimization. “There’s a  trade- off 

between the amount of area you can cover 
by unfurling the shell and the amount of 
energy you have to spend by wrinkling,” 
says Tobasco.

Physically, surface  tension— the domi-
nant role of the liquid in the  experiment— 
acts to pull the sheet’s edges as far apart 
as possible.4 But gravity is also at play on 
the system, and its effect doesn’t obvi-
ously lead to coverage maximization. 
“Before deriving the theory, I had no in-
tuitive guess for how gravity would se-
lect the patterns,” says Tobasco.

Katifori’s group spearheaded the sim-
ulations. The team used a  finite- element 
method to study how gravity may affect 
wrinkle patterns. Katifori and her col-
leagues found that  gravity- driven sys-
tems were no different than ones driven 
by surface tension. The simulations with 
zero surface tension produced the same 
coverage maximization and the same 
wrinkle patterns as in the experiments.

The wrinkle patterns are similar to  so- 
called locking materials. In fact, that 
similarity was what led Tobasco to the 
two rules for predicting the patterns. If 
one pulls at the end of a fitted bedsheet, 
for example, it initially stretches with only 
a negligible applied force. Eventually, 
however, locking materials experience an 

abrupt limit where they cannot stretch 
further unless there’s a substantial in-
crease in force.

Wrinkle patterns show more subtle 
locking behavior. If one pulls a wrinkled 
sheet perpendicular to the crests and 
troughs, then the wrinkles disappear. 
But pull the sheet along the crests and 
troughs, and the wrinkle pattern locks 
into place.

Although the new rules make predic-
tions for wrinkles, they may be useful for 
understanding folds and other micro-
structures in bulk materials and thicker 
films. “Being ultrathin is not actually 
absolutely necessary,” says Katifori. “Peo-
ple are working in more  intermediate- 
thickness regimes, and you still see sim-
ilar patterns. It seems that some aspects 
of it are true in a very wide range of 
regimes.”

Alex Lopatka
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FIGURE 2. THIN CURVED SHEETS that are pressed onto a flat surface often exhibit 
ordered wrinkle patterns. (a, d) For sheets with negative curvature κ, wrinkles form 
along line segments (solid blue lines) that follow the shortest path to the sheet boundary 
(dashed white line) from a medial axis (dashed black line)—the set of points that have 
two or more closest edge points. (b, e) The line segments form the two  equal- length 
sides of isosceles triangles. (c, f) Sheets with positive curvature produce wrinkles that 
form along the triangles’ opposite legs (solid yellow lines). The area bounded by the 
yellow polygon in panel f is characterized by disordered wrinkle patterns. (Adapted 
from ref. 1.)
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