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C
an a Bose–Einstein condensate exist 
at room temperature? If it’s made of 
atoms, not by a long shot. To coax a 

gas of bosonic atoms to pile up in their 
quantum ground state, researchers must 
cool the gas to within a few millionths of 
a degree of absolute zero.

More accessible condensates can be 
made by replacing the atoms with po-
laritons: light–matter quasiparticles that 
form when photons in an optical cavity 
couple to electronic excitations in a solid. 
Because the quasiparticles have such low 
effective masses, their quantum effects set 
in much more easily. 

Polariton condensates form at standard 
cryogenic temperatures—around 4 K, the 
temperature of liquid helium—and under 
some circumstances, even at room tempera-
ture.1 The warmer conditions make it eas-
ier to study the physics of Bose–Einstein 

condensation and to pursue potential 
technological applications (see the article 
by David Snoke and Jonathan Keeling, 
PѕѦѠіѐѠ TќёюѦ, October 2017, page 54).

But polariton condensates aren’t quite 
the same as atomic Bose–Einstein con-
densates. Unlike stable atoms, polaritons 
persist for only as long as their constitu-
ent photons remain trapped in the cav-
ity—usually on the order of a few pico-
seconds. To keep a polariton condensate 
from decaying away to nothing, research-
ers have to keep repumping it with fresh 
photons. As a result, the condensate 
never thermally equilibrates; at best, it 
approaches a steady state.

Does it matter whether a polariton con-
densate is populated with new photons 
or old ones? Jacqueline Bloch (University 
of Paris–Saclay), Léonie Canet (Grenoble 
Alpes University), and colleagues have 

now shown that it does: Because of its 
nonequilibrium nature, a polariton con-
densate behaves in an observably different 
way from its equilibrium counterparts.2

The behavior follows the form pre-
dicted by the Kardar-Parisi-Zhang (KPZ) 
model, which describes a wide variety of 
nonequilibrium systems—but until now, 
only classical ones. The polariton conden-
sate work is the first observation of KPZ 
physics in a quantum system. It also offers 
a new way to study phenomena in non-
equilibrium statistical mechanics that have 
stymied theorists and experimenters alike.

Universal fluctuations
When Mehran Kardar, Giorgio Parisi, 
and Yi-Cheng Zhang developed the KPZ 
model in 1986, they had in mind a specific 
type of system: the interface of a stochas-
tically expanding or contracting classical 
object or region.3 Although a large num-
ber of seemingly disparate interfaces fit 
the bill—including those of growing crys-
tals, aggregating colloidal clusters, bacte-
rial colonies, statues being eroded by acid 
rain, and burnt regions of forest or grass-
land—they’re all fundamentally governed 
by the same physics. That is, they belong 
to the so-called KPZ universality class.

Kardar, Parisi, and Zhang formulated 
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Although similar to ultracold atomic gases, fluids of quasi-
particles in a solid have more in common with forest fires.

Polariton condensates show 
their nonequilibrium side
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FIGURE 1. THE JAGGED EDGE of the boundary between burnt and unburnt regions of grassland (a) is a consequence of non-
equilibrium statistical physics. The fluctuations’ scale and shape depend crucially on the fact that the fire is expanding, not standing 
still. The evolving phase of a polariton condensate (b), shown here as snapshots from a simulation, follows the same mathematical 
form, as described by the Kardar-Parisi-Zhang model. (Panel a by Nordroden/Shutterstock.com; panel b adapted from ref. 2.)



 NOVEMBER 2022 | PHYSICS TODAY  17

a partial differential equation that de-
scribes the interface evolution as a com-
petition between smoothing from diffu-
sion or surface tension, roughening from 
random noise, and nonlinear growth nor-
mal to the surface. From that equation, 
they started to derive the mathematical 
properties of the interface shape. In par-
ticular, the lumps and bumps of a KPZ 
interface, such as the wildfire front shown 
in figure 1a, are characterized by certain 
power-law correlations that differ from 
those that arise in systems without the 
nonlinear growth term. The KPZ model 
therefore captures the distinctions be-
tween a dynamic, growing system and an 
equilibrium one.

But discovering all the implications of 
the KPZ model has taken a decades-long 
effort that’s still not complete. On the 
mathematical front, the model’s central 
equation wasn’t even well defined: It’s a 

differential equation, but the random noise 
it introduces is nondifferentiable. The an-
alytical tools for dealing with stochastic 
noise in linear differential equations ex-
isted back in the 1980s, but it wasn’t until 
2013 that mathematician Martin Hairer 
found an approach that would work for 
the nonlinear KPZ equation. For his work, 
Hairer was awarded the Fields Medal in 
2014.

On the experimental side, it’s ex-
tremely challenging to measure an inter-
face’s time evolution—by its very nature, 
an irreversible and irreproducible pro-
cess—in enough detail to compute its 
statistical properties. Although the char-
acteristic power-law correlations were 
observed in many systems shortly after 
Kardar, Parisi, and Zhang’s original work, 
only in 2010 did Kazumasa Takeuchi and 
Masaki Sano perform a comprehensive 
analysis of the scaling behavior and fluc-

tuations of a growing interface in a tur-
bulent liquid crystal.4

Today, the KPZ model is well under-
stood in one dimension—that is, for a line-
like interface working its way across a 
planar landscape—but in higher dimen-
sions, little is known. Simulations have of-
fered some insight into the 2D KPZ model. 
But despite numerous efforts, detailed 
experiments on 2D interfaces of growing 
3D objects are almost entirely absent, and 
the 2D KPZ equation is unsolved.

Phase transition
Polariton condensates aren’t character-
ized by interfaces, and they bear little 
resemblance to other systems in the KPZ 
universality class. But in 2015 two teams 
of theorists predicted that the mathemat-
ics of the KPZ model should describe the 
evolving phase of a polariton condensate 
wavefunction.5 Figure 1b shows a simu-
lation of what it might look like. As time 
progresses, the average phase advances 
at a constant linear rate. But the random-
ness introduced by the photon loss and 
repumping means that the phase picks 
up some local fluctuations, just like in 
any other KPZ interface.

The phase isn’t directly observable, but 
its correlations can be measured through 
Michelson interferometry: The light emit-
ted by the condensate is passed through 
a beamsplitter, one of the beams is sent 
down a delay line and back, and the beams 
are recombined. If the time to traverse the 
delay line is, say, 50 ps, the intensity of 
the recombined beam measures the cor-
relation of the phase at time t with the 
phase at time t + 50 ps. The spatial correla-
tions, meanwhile, can be measured di-
rectly from the spatially resolved inter-
ference pattern. By varying the length of 
the delay line, one can therefore study the 
functional form of the phase correlations 
and test it against the KPZ prediction.

That was the basis of Bloch, Canet, and 
colleagues’ approach. To best compare 
with existing KPZ theory, they used a 1D 
polariton condensate confined to the row 
of micropillars in figure 2a. The pillars are 
made of layers of different semiconduc-
tor materials, some of which act as mir-
rors to trap the photons and others of 
which form the quantum wells that host 
the solid-state excitations. An example 
of the measured interference pattern is 
shown in figure 2b.

“The biggest challenge was mapping 
the observations onto the theory,” says 
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FIGURE 2. A ONE-DIMENSIONAL polariton condensate offers the best comparison 
to existing Kardar-Parisi-Zhang theory. (a) The condensate is confined to a row of 
semiconductor pillars. Each pillar is made of layers of different materials, some of 
which form the mirrors that trap the photons, others of which form the quantum wells 
that host the electronic excitations. (b) Michelson interferometry of the light emitted 
by the condensate yields a series of interference patterns like this one, from which 
researchers can extract the correlations in the condensate phase across time and space. 
(Panel a courtesy of C2N/CNRS; panel b adapted from ref. 2.)
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Bloch, “to make sure we were measuring 
the right thing.” Canet elaborates: “Po-
lariton physics is quite far from statistical 
physics, and we needed to draw on ex-
pertise from various communities just to 
know what the relevant observables were 
and how to disentangle KPZ physics 
from other effects.” With Bloch’s experi-
ence with polariton experiments, Canet’s 
expertise in KPZ theory, and collaborator 
Anna Minguzzi’s knowledge of the the-
ory of Bose–Einstein condensation, the 
team was able to confirm that the polar-
iton condensate’s phase correlations did 
indeed adhere to the predictions of the 
KPZ model.

Confounding vortices
A natural next step is to extend the work 
from one dimension to two. It’s a lot easier 
to measure correlations in the phase of a 
2D polariton condensate than in, for ex-
ample, the 2D surface of a 3D expanding 
forest fire. Polariton condensates might 
seem to be a gift to the KPZ universality 
class to launch the model into the next 
dimension.

But before that can happen, research-
ers will need to fully understand a com-

plicating factor that distinguishes polar-
iton condensates from other KPZ systems. 
Whereas the height of a physical inter-
face can be any real number, phase takes 
values only between 0 and 2π, so a phase 
of π is the same as a phase of 3π, 5π, 7π, 
and so on.

A 2D polariton condensate can there-
fore host phase vortices, where traveling 
around a closed loop picks up a phase 
change of some multiple of 2π. The con-
densate can undergo a phase transition 
(the Berezinskii-Kosterlitz-Thouless tran-
sition; see PѕѦѠіѐѠ TќёюѦ, December 2016, 
page 14) in which vortex–antivortex pairs 
form and separate. And the vortex dy-
namics can influence the measured phase 
correlations, potentially overwhelming the 
KPZ effects.

Because closed loops don’t exist in one 
dimension, it might seem that the re-
searchers haven’t yet encountered any 
vortices. But to their surprise, they found 
that they have. When they simulated 
the phase dynamics in 1 + 1 dimensions 
(that is, one space dimension and one 
time dimension), vortex–antivortex pairs 
did show up—and the pairs didn’t nec-
essarily disrupt the KPZ dynamics. 

When the vortices are sparse enough, the 
signature KPZ fluctuations still shine 
through.

The researchers have some ideas for 
how to lessen the vortex effects in a 2D 
condensate by shaping the semiconductor 
lattice that hosts it. But because so little 
is known about KPZ physics in higher di-
mensions, it’s hard for them to even spec-
ulate about what they might find. “The 
polariton condensate is really different 
from an equilibrium Bose–Einstein con-
densate, and it is far richer than a classi-
cal growing interface,” says Canet. “It’s 
essentially a new state of matter—a new 
object—and that could lead to some re-
ally different applications.”

Johanna Miller
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