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n his famous Lectures on Physics, Richard Feynman reflected on a “physical problem
that is common to many fields, that is very old, and that has not been solved. It is not

the problem of finding new fundamental particles, but something left over from a long

time ago—over a hundred years. . . . It is the analysis of circulating or turbulent fluids.

71

Even today in the age of supercomputers, the need for understanding, modeling, and

— predicting aspects of turbulent flows has, if anything, increased. Reliably simulating turbu-

lent flows still requires more theoretical advances, and Feynman’s vision of “solving the

problem of turbulence” remains elusive.

Turbulent flows are characterized by apparently ran-
dom, chaotic motions. And they are everywhere: They
govern the efficiency of gas turbine engines, the work-
horses of modern power generation and aerospace
propulsion, and of large-scale wind farms, a key technol-
ogy for renewable energy (see the article by John Dabiri,
PHYsICS TODAY, October 2014, page 66). In the past year,
turbulent flows produced by coughs and sneezes, as
shown in figure 1a, have come to the forefront because
of the COVID-19 pandemic.2 What’s more, turbulence
physics is vital for estimating and mitigating the impact
of deep-sea oil spills, informing parameterizations for
weather prediction and global climate models, and
quantifying the turbulence-induced damage on red
blood cells in artificial heart valves and blood pumps.

Turbulence is at work even in our leisure; it alters the
aerodynamic behavior of, for example, race cars, golf
balls, baseballs, and soccer balls—as illustrated by the ir-
regular motion of the controversial Jabulani soccer balls
specially designed for the 2010 World Cup. (For more on
soccer-ball dynamics, see the article by John Eric Goff,
PHYSICS TODAY, July 2010, page 62.)

For many turbulent scenarios, analytical solutions to
the equations of motion aren’t possible, and the compu-
tational cost of simulations is unwieldy. For example, in
large arrays of wind turbines, such as the ones shown
here, a turbulent wake of lower-speed air forms behind
each turbine and diminishes the power output of down-
wind ones caught in the wake.> The smallest turbulent
motions in that flow are less than a millimeter, whereas
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Vorticity: Fluid rotation Strain rate: Fluid deformation
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FIGURE 1. TURBULENT FLOWS, which occur in various systems,
share two forms of motion. From the wind turbines seen in the
opening image to (a) the sneeze droplets pictured here (reproduced
from ref. 2), turbulence contains strong coherent regions where

(b) fluid (blue square) is subjected to rotations, which are quantified
by the vorticity, or to deformations, which are quantified by the
strain rate. Viscosity does not resist rotations, but it does resist
deformations. As a result, the strain rate results in energy dissipation.

the farm extends for kilometers. A brute-force simulation with
millimeter resolution over a kilometer range is not currently
possible, nor will it be in the foreseeable future. A similar com-
bination of small and large scales holds true for many impor-
tant turbulent flows, such as the aerodynamic flow over a car
or airplane* and the complex flow through airplane engines.
Despite emerging in such disparate physical systems, turbu-
lent flows tend to display remarkably similar characteristics—
although different types of turbulent flows have enough
unique qualities and behaviors to warrant discipline-specific
specialized research. However, the emergence of universal at-
tributes motivates cross-disciplinary effort to analyze and com-
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Viscosity does not resist Viscosity resists, dissipates energy

pute turbulence. One such attribute is the enhancement of en-
ergy dissipation through the production of motion on a pro-
gressively smaller scale. Understanding the physical mecha-
nisms behind that dissipation is vital for constructing accurate
theories and computational models of turbulence.

Energy cascade

A detailed description of a turbulent flow involves a three-
dimensional field of velocity vectors u, which vary erratically in
space and time. Turbulent velocity fluctuations are not com-
pletely unorganized in space and time; on closer inspection, they
have a degree of coherence not on a set of discrete length scales
or frequencies but in an intrinsically broadband manner. The
faster or larger the overall flow or the lower the fluid viscosity,
the wider the range of length scales and frequencies dynamically
active in a turbulent flow. The low viscosities of common fluids
such as air and water (v, =10° m%*s and v, =10° m%s) ex-
plain why turbulent flows with a wide range of scales are en-
countered frequently in science and engineering.

The multiscale nature of turbulence can be thought of as a
superposition of motions with spatial coherence of a given
length scale. The wide range of scales in a turbu-
lent flow results from one of the most fundamen-
tal and universal aspects of turbulence: the en-
kS ergy cascade. It is the process by which kinetic
( energy generated at large scales is passed succes-
sively from smaller scale to smaller scale until the
motions are so small that viscosity prevents the
formation of even smaller motions because it dis-
sipates the energy into heat. The process occurs
rapidly and enhances the overall rate of energy
dissipation far above that of smooth laminar
flows.

The energy cascade is an important considera-
tion for computer simulations in scientific discovery
and engineering design. For the wind-farm exam-
ple discussed earlier, any attempt at simulation must
use coarser-grain resolution than a millimeter and
thus end up severely underresolved. To compensate
for that lack of resolution, kinetic energy is artifi-
cially removed from simulations to mimic the cas-
cade of energy from resolved scales to unresolved

‘water

FIGURE 2. STRETCHING AND ROTATING regions. In
this turbulence visualization, most of the fluid has low
activity, but certain regions are characterized by large-
. magnitude vorticity (blue) and large-magnitude strain
2 rate (red). (From ref. 6.)
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FIGURE 3. ENERGY DISSIPATES at an enhanced rate from a
combination of two mechanisms. (a) When under strain (red, green,
and violet arrows), a fluid vortex rotating at a rate w, gets stretched
out, and the result is a higher rotation rate w,. Energy passes to suc-
cessively smaller and smaller vortices, a phenomenon known as
vortex stretching. (b) Regions of strong strain rate can also self-
amplify. In that mechanism, a sheet-like region of high compression
naturally tends to grow thinner as the strain rate gets steeper because
faster-moving fluid (peaks in graphs of u, as a function of position x)
overtakes slower fluid ahead of it and squeezes the fluid particle.

ones. Doing so accurately requires understanding the mecha-
nisms behind the energy cascade.

Stretches and whirls

In a 1922 rhyming verse, British meteorologist Lewis Richard-
son was the first to describe the energy cascade in turbulent
flows: “Big whirls have little whirls that feed on their velocity,
and little whirls have lesser whirls and so on to viscosity.”> The
dynamics of “whirls” or eddies—that is, localized rotations in
a flow —has since proven key to the phenomenology of the en-
ergy cascade.

In the continuum approximation of fluid dynamics, a fluid
particle is defined as an effectively infinitesimal volume of fluid
at a specific location. In addition to the particle’s velocity, its
dynamics is described by two quantities: the vorticity and the
strain rate. The vorticity gives the rate at which a fluid particle
at a given position is rotating. The strain-rate tensor describes
the local rate at which a fluid particle is getting stretched and
squeezed. In figure 1b, for example, strain deforms an initially
square fluid particle into a rectangle. Pressure forces keep a
fluid particle’s volume constant in flows with velocities well
below the speed of sound, so a particle that is stretched in one
direction will necessarily be squeezed in another.

Mathematically, the vorticity and the strain rate involve the
gradient of the velocity vector, Vu, a 3 x 3 rank-2 tensor that de-

scribes the local variation of the three components of velocity in
each of the three coordinate directions. The strain rate S is de-
fined as S = %[Vu + (Vu)"], in terms of the gradient tensor and its
transpose, and the vorticity vector w is defined as w =V x u. The
magnitude squared of the velocity gradient tensor, measured
using the square root of the sum of the absolute squares of the
tensor elements, is the sum of the strain-rate and vorticity mag-
nitudes, IVull>?=1SI12+ 1l w2

But those two components are physically distinct, as high-
lighted by their relationship to viscosity. A fluid’s viscosity v
quantifies how much the fluid resists deformation by the strain
rate. That resistance dissipates kinetic energy into heat at a rate
€ =2vISI12 Viscous forces do not resist rotation, so vorticity in-
curs no similar energy dissipation.

Figure 2 shows regions with large-magnitude vorticity and
strain rate in a simulation of a stirred fluid in a periodic box.®
The soup of turbulence contains mostly regions with low ac-
tivity intermittently dispersed with coherent regions of high
vorticity and high strain rate.

Vortex stretching

In the years after the publication of Richardson’s verse, the dy-
namics of vorticity has commonly been associated with the en-
ergy cascade, even though vorticity doesn'’t directly cause en-
ergy dissipation. A phenomenon known as vortex stretching is
widely used to explain the connection. When a vortex—a com-
pact tube-like region of vorticity —is pulled by the fluid’s strain-
ing motion along the axis of rotation, as depicted in figure 3a,
the cross section of the vortex shrinks. Conservation of angular
momentum dictates that the rotation rate must increase, similar
to when spinning figure skaters pull in their arms to rotate faster.
The result is a larger-magnitude vorticity in a smaller vortex. The
region of coherent strain rate typically spans a slightly larger
scale than the vortex and, through the work involved in stretch-
ing the vortex, passes energy from larger to smaller scales.

The historical explanation for the energy cascade was suc-
cessive vortex-stretching events,” an idea introduced in a 1938
paper by G. L. Taylor. After careful measurements of a model
turbulent air system—produced by placing a square grid of
cylindrical bars in a wind tunnel—he wrote, “It seems that the
stretching of vortex filaments must be regarded as the principal
mechanical cause of the high rate of dissipation which is asso-
ciated with turbulent motion.”® A decade later Lars Onsager
echoed that assessment in his theoretical treatment of turbu-
lence: “Since the circulation of a vortex tube is conserved, the
vorticity will increase whenever a vortex tube is stretched. . . .
This process tends to make the texture of the motion ever finer,
and greatly accelerates the viscous dissipation.”? Despite the
prevailing belief that the energy cascade is driven by vortex
stretching, a precise connection between the two has remained
elusive until recently, as will be discussed below.

Work in the past few decades has suggested an alternative
mechanism called strain self-amplification to explain how en-
ergy passes from larger to smaller motions.”” In strain self-
amplification, shown schematically in figure 3b, a strong com-
pressive strain rate naturally steepens as faster-moving fluid
(peaks in the graphs of velocity) overtakes slower-moving fluid
in its path. The effect is analogous to an ocean wave steepening
before it breaks. Physically, strain self-amplification reduces the
size of the region being squeezed and distributes the associated
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FIGURE 4. A STIRRED FLUID simulated in a periodic box displays
turbulence in its three-dimensional flow. (@) A 2D slice showing the
magnitude of the flow’s velocity (red, high velocity; blue, low velocity)
includes coherent motions of various sizes, including very small-scale
features. (b) A technique called spatial filtering makes the simulation
easier by sacrificing the resolution of small-scale motions. (c) The
velocity gradient, typified by the vorticity seen here, reveals the
smallest-scale motions in turbulence. (d) Spatially filtered vorticity,
and by extension filtered velocity gradients, highlight motions at a
chosen length scale. Filtered velocity gradients thus provide a basis
for quantifying how energy passes between different scales.

kinetic energy toward smaller scales of motion. Similar to vor-
tex stretching, successive self-amplification events can explain
the energy cascade.

Navier-Stokes equation

To move from simplified descriptions of vortex stretching and
strain self-amplification to the chaotic reality of turbulent flow
requires a quantitative description. The Navier-Stokes equa-
tion encapsulates the law of momentum conservation for a
fluid flow. In the simplest form, it can be written as a partial
differential equation of the velocity vector field:

aa—ltl+u-Vu=—le+vV2u.
p

On the right side of the equation, forces due to pressure gradi-
ents Vp and viscosity v accelerate a fluid of mass density p.

Acoustic waves and electromagnetic radiation propagate at
speeds set by either the medium or physical constants, such as
the vacuum permittivity. As a result, excitation at a single fre-
quency typically results in a single-frequency field. The mo-
mentum of a fluid particle, on the other hand, propagates at
the local fluid velocity, which in turn is proportional to the mo-
mentum. That property generates the nonlinear term in the
Navier-Stokes equation u - Vu, which leads to vortex stretching
and strain self-amplification.

Analytical solutions aren’t possible in the Navier-Stokes
equation for turbulent flows. But insights into the flow’s non-
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linear dynamics are possible if the equation is reframed in
terms of the velocity gradient field Vu instead of the velocity
field u and if the fluid particles are treated as independent of the
influence of neighboring particles. Although that autonomous-
particle assumption is a severe simplification, it enables exact
analytical solutions. The result, called the restricted Euler
equation, is drastically simplified with only a few degrees of
freedom.

In 1982 Patrick Vieillefosse demonstrated that for all initial
conditions, the restricted Euler equation leads to a singularity
in finite time—that is, the velocity gradient magnitude IVull
becomes infinite at some specific time." The underlying cause
of that singularity is clear from the equation for the growth in
velocity gradient magnitude,

d (1 1
d—t(EIIVulﬁ) --Tr(S'S-S)+ 2w S w.

P P

)

The velocity gradient’s growth is driven by strain self-
amplification, which happens at the rate Py, and vortex stretch-
ing, which happens at the rate P,. When unopposed by the
pressure and viscous forces of neighboring fluid particles,
those two processes, which represent the autonomous dynam-
ics of individual fluid particles, produce the singularity in the
restricted Euler equation. Physically, the pressure and viscous
forces of the Navier-Stokes equation restrain the autonomous
dynamics and avert such singularities.

But along the path to the singularity, restricted Euler solu-
tions display many traits that are observed in turbulent flow
experiments and computer simulations of the full Navier—
Stokes equations.” Those features account for why P and P,
are positive on average for full Navier—Stokes solutions. In fact,
only specially constructed configurations of the interactions
with neighboring fluid particles can prevent nonlinear effects
from establishing the statistical bias toward positive P; and P,
and the affiliated growth of the velocity gradient.”

Spatial filtering

A route to make the simulation of turbulence computationally
tractable is a simplification known as spatial filtering, which is
akin to changing the resolution of an image. A low-pass spatial
filter operation is a weighted average over a subregion with
characteristic size {. Applying the filter to a 3D turbulent ve-
locity field removes motions smaller than {—for example, the
velocity field in figure 4a becomes the image in figure 4b after
spatial filtering.

The Navier-Stokes equation can be filtered to obtain a dy-
namical equation for the smoothed field shown in figure 4b.
In the filtered Navier-Stokes equation, kinetic energy dissi-
pates either through viscosity directly acting on the large-scale
motions and thus dissipating energy into heat, as it does in an
unfiltered field, or through energy passing to small-scale mo-
tions not represented in the filtered field. At sufficiently large
filter sizes, energy removal results primarily from the latter.
The field IT quantifies the rate at which that energy transfer
happens.'*

The gradient of the velocity field highlights the smallest-
scale activity in a turbulent flow, as shown by the detailed fea-
tures in figure 4c. That small-scale activity —namely, the vortic-
ity and strain rate—predominantly organizes into small
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coherent regions, which resemble a chaotic soup of miniature
tornadoes that swirl and stretch the participating fluid particles.
The gradient of the filtered velocity field, however, accentuates
organized motions of size {, whatever filter size is chosen, as il-
lustrated in figure 4d. Filtered velocity gradients thus provide
a convenient definition for the scales of motion in turbulence.

A quantitative description of how turbulent motions at
scale € drive the cascade of energy from scales larger than ¢ to
those smaller than £ becomes possible only if IT can be related
to Ps, P, and similar terms—that is, the mechanism behind
turbulence cascade becomes clear if the local cascade rate can
be written in terms of filtered vorticity and strain rate.
Whereas previous work demonstrated a connection only in
terms of truncating an infinite series, with no clear explanation
as to the role of truncated terms, recent work has provided an
exact relation.’

Cascade rate
The energy cascade rate can be written as a sum of five contri-
butions: IT=TI1,+IT, +TIIy,+I1,+II,. The first two parts, I, = %2
{*P and Il =%{(?P , are proportional to the strain self-
amplification and vortex stretching at scale £. The filtered ve-
locity gradients tend to strongly self-amplify, just as in the re-
stricted Euler equations, due to biases toward P; >0 and P, >
0. Robert Betchov derived an exact relation for velocity gradi-
ents'® that when rephrased for filtered fields states that the av-
erage contribution of Il to the energy cascade is three times
that of IT,. The first two rate terms, Il; and I, were indepen-
dently identified by Maurizio Carbone and Andrew Bragg
using a truncated series."” But solidifying a set of cascade mecha-
nisms relied on the identification of the remaining three terms.
The next two contributions to the energy cascade, I1, and
IT,,, have interpretations analogous to the first two terms. They
arise from the amplification of smaller-scale strain rate by
larger-scale strain rate and the stretching of smaller-scale vor-
ticity by larger-scale strain rate, respectively. The final term,
IT,, results from the distortion of small-scale strain—vorticity
covariance by larger-scale strain rate. Whereas the first two
terms represent the contribution of velocity gradient dynamics
at one scale, the final three terms describe multiscale inter-
actions. Numerical simulations have revealed that the final
term contributes little, so the energy cascade rate is in practice
a sum of the first four terms. Those terms precisely quantify
strain self-amplification and vortex stretching along with their

FIGURE 5. KINETIC ENERGY introduced at large scales in turbulent flows
passes successively through intermediate scales at different rates due to strain
self-amplification (Mg and Mg,) and vortex stretching (M, and I,,). At the end of
the cascade, energy dissipates as heat because of viscosity’s resistance to
small-scale motion.

respective multiscale generalizations.

Figure 5 shows the fractional contribution of each term as
numerically computed from turbulent solutions to the Navier—
Stokes equation for a stirred fluid in a periodic box. Contrary
to the theories of Taylor® and Onsager,’ strain self-amplification
is a bigger contribution to the energy cascade than vortex
stretching, and previously unidentified multiscale interactions
are a vital part of the picture. The results provide invaluable
insights for improving approximation methods for computing
an artificially smoothed version of turbulent flows, such as the
coarse-grained simulation of a wind farm described earlier.
Those methods depend on models that accurately represent
the energy cascade to know how energy must be removed from
the simulation in a point-wise manner. And a precise under-
standing of multiscale strain self-amplification and vortex
stretching can lead directly to more accurate models."

Vortex stretching and strain self-amplification are universal
aspects of turbulent flows, so results in simple flows should il-
luminate modeling efforts for a wide range of complex flows,
including wind farms, gas turbine engines, and aerodynamic
vehicles. For the time being, experimental measurements of
both scaled-down replicas and expensive full-scale systems re-
main indispensable to scientific discovery and engineering de-
sign. But developments in turbulence theory and modeling
will help propel computer simulation into a more central role
in design and analysis. Many applications will require extend-
ing the current models to include additional physical phenom-
ena such as heat and mass transport in combustion engines,
flows with density stratification in oceans, compressible flows
for high-speed flight, flows in a magnetic field in astrophysics,
and flows with small particles and drops.
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