

Einsteinian subtleties in Magritte's *Time Transfixed*

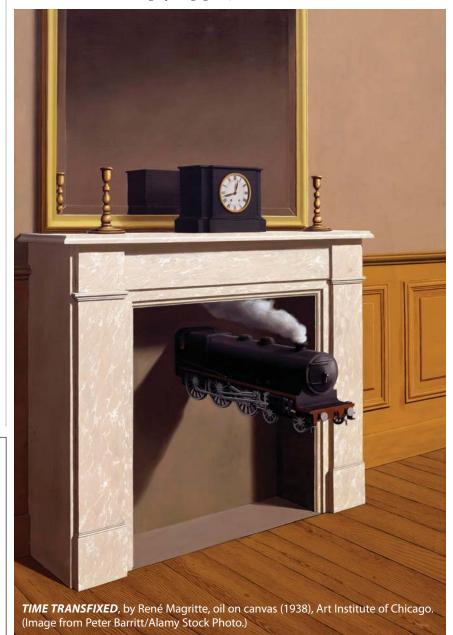
n his 1938 painting *La durée poignardé* (*Time Transfixed*; shown below), Belgian surrealist René Magritte presents a surprising and enigmatic juxtaposition of common and unrelated images—a smokebelching locomotive charging out of a fireplace topped by a clock and two candlesticks, all beneath a large mirror in an otherwise typical interior space.

Albert Einstein was interested in clock synchronization, particularly as it pertained to time signals for railroad schedules and longitude determination. One of his many *gedanken* experiments demonstrated the lack of timing agreement between two observers, one on a moving train and the other standing near the tracks. Simultaneity—and hence time and space—is relative.

Magritte's fireplace finds a connection with Einstein through the 1930s fireplace (see next page) located in Common Room 202 of Jones Hall (formerly Fine Hall) at Princeton University. Einstein had an office there when he first came to Princeton from Germany. Inscribed on the fireplace is a remark Einstein had made during a 1921 visit to Princeton: "Raffiniert ist der Herr Gott, aber boshaft ist er nicht," commonly translated as "Subtle is the Lord, but malicious He is not." Magritte would probably prefer "surreal" to Einstein's "subtle."

And what of Magritte's mirror? Mirrors figure prominently in the Michelson interferometer that was used in the notably unsuccessful attempt to detect the putative luminiferous ether. Also, precision mirrors were used at the Laser

Letters and commentary are encouraged and should be sent by email to ptletters@aip.org (using your surname as the Subject line), or by standard mail to Letters, PHYSICS TODAY, American


Center for Physics, One Physics

Ellipse, College Park, MD 20740-3842. Please include your name, work affiliation, mailing address, email address, and daytime phone number on your letter and attachments. You can also contact us online at https://contact.physicstoday.org. We reserve the right to edit submissions.

Interferometer Gravitational-Wave Observatory to detect gravitational waves, 100 years after Einstein's 1915 general theory of relativity predicted them, from the merger of two black holes 1.3 billion light-years from Earth.⁴

Although there is no evidence that Magritte intended to represent those Einsteinian ideas in his painting, surrealists were nonetheless thoroughly engaged with modern physics; they referred repeatedly to relativity and quantum physics in their writings and often interpreted those new sciences through their work.⁵

The two candlesticks, one of which is mysteriously missing its mirror reflection, remain for now outside the bounds of even a coincidental relativistic connection to Magritte's famous painting. Nevertheless, the associations between

FIREPLACE IN JONES HALL at Princeton University. Albert Einstein had an office there in the 1930s. (Photo by Robert Fleck.)

Magritte's art and Einstein's science are striking and help to situate the painting in the broader intellectual and cultural compass of its transfixed time.

References

- 1. P. Galison, Einstein's Clocks, Poincaré's Maps: Empires of Time, W. W. Norton (2003).
- 2. A. Einstein, Relativity: The Special and the General Theory, R. W. Lawson, trans., Crown (1961), p. 25.
- 3. A. Pais, "Subtle Is the Lord. . . ": The Science and the Life of Albert Einstein, Oxford U. Press (1982), p. vi.
- 4. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo collaboration), Phys. Rev. Lett. 116, 061102 (2016).
- G. Parkinson, Surrealism, Art, and Modern Science: Relativity, Quantum Mechanics, Epistemology, Yale U. Press (2008).

Robert Fleck

(fleckr@erau.edu)

Embry-Riddle Aeronautical University Daytona Beach, Florida

Repulsive **Casimir forces**

The article "Science and technology of the Casimir effect" by Alex Stange, David Campbell, and David Bishop

(PHYSICS TODAY, January 2021, page 42) presents data from a 2009 experiment by Jeremy Munday and coworkers¹ that shows that Casimir forces can be repulsive. Sixteen years earlier we published similar results.2

As Stange and coauthors point out, the Casimir force is emerging as a technological tool to manipulate matter at small scales. Our earlier effort to create repulsive and nearly neutral Casimir and van der Waals interactions was motivated by an attempt to improve the imaging resolution of contact-mode atomic force microscopy (AFM). The idea was to eliminate the jump-to-contact instability associated with attractive Casimir interactions, which elastically deforms the AFM tip, sets a lower limit on its effective size, and reduces imaging resolution. Imaging with special fluids works to eliminate that instability, but the fluids we had to use, bromo- and methylnaphthalene, were not compatible with biological materials. Since our hope was to image molecules such as DNA, we did not pursue further the manipulation of Casimir forces.

References

- 1. J. N. Munday, F. Capasso, V. A. Parsegian, Nature 457, 170 (2009).
- 2. J. L. Hutter, J. Bechhoefer, J. Appl. Phys. 73, 4123 (1993).

John Bechhoefer

(johnb@sfu.ca) Simon Fraser University Burnaby, British Columbia, Canada

Jeffrey L. Hutter

(jhutter@uwo.ca) University of Western Ontario London, Ontario, Canada

Icebreakers and Arctic ice melt

aara Matala's article "Finnish-Soviet nuclear icebreakers" (PHYSICS TODAY, September 2020, page 38) gives an account of how the small Western country of Finland managed to maintain its neutrality and start a commercial collaboration with the Soviet Union based on icebreakers. What struck me most in the article was figure 1, which depicts the routes around the Arctic Ocean: the Northern Sea Route along Siberia and the Northwest Passage along Canada. Almost every article I have read regarding the early and accelerating melting of the Arctic ice stresses the importance of the albedo difference between intact ice and free ocean water (see, for example, "The thinning of Arctic sea ice," by Ron Kwok and Norbert Untersteiner, PHYSICS TODAY, April 2011, page 36).

When I read that Finland's "five Moskva-class polar icebreakers" were "designed to cut through multiyear Arctic sea ice," my mind linked icebreakers with the premature Arctic melt. Icebreakers keep the routes in figure 1 open most of the year-if not year-round-for commercial shipping. Thus they initiate or at least aggravate the melting of multiyear sea ice: Breaking the ice allows the open waters to warm with respect to the surrounding ice due to the albedo difference, with probably a very small addition from the heat generated by the ships themselves. I therefore find it hard to believe that a PHYSICS TODAY news story (September 2017, page 24), for example, advocates the use of new icebreakers "to gauge global effects of the polar region's diminishing ice cover." I have to wonder if the models regarding Arctic warming have taken the effect of icebreakers into consideration.

Peter Steur

(pesteur@alice.it) Moncalieri, Italy

▶ Matala replies: The question Peter Steur asks, whether it is reasonable to advocate the use of icebreakers "to gauge global effects of the polar region's diminishing ice cover," would be better answered by a climate change expert.

As a historian of technology, not a trained climate scientist, I consider what information the contemporary actors had. The Helsinki shipyard contracted for the first Moskva-class polar icebreakers in the mid 1950s, before climate change was seriously considered in ship design.

My article emphasized the ability of polar icebreakers to "cut through multiyear Arctic sea ice" because length constraints restricted discussion of other features that differentiated the polar icebreakers from the previous Finnish design. Getting through multiyear ice is a heavy task even for modern icebreakers. Most of the shipping activities in the Northern Sea Route take place during the summer season when sea-ice cover is lower.