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Council Centre of Excellence for Engineered Quantum Systems at the
University of Sydney. Michael Hush is the chief scientific officer at Q-CTRL.

computer capable of calculations that are impossible for conventional

devices—by using just over 50 qubits.

Researchers are now on the threshold of being able to de-
ploy quantum computers to solve a host of critical problems
ranging from pharmaceutical drug discovery and industrial
chemistry to codebreaking and information security. (For more
on quantum cryptography, see the article by Marcos Curty, Koji
Azuma, and Hoi-Kwong Lo on page 36 of this issue.) Because
of ongoing developments in computational heuristics and ap-
proximate quantum algorithms, quantum computers may well
be able to solve commercially relevant problems with some
computational benefit, reaching what’s known as quantum ad-
vantage, within the next decade.

Realizing useful computations using quantum systems re-
quires scientists to recognize that performance is limited pre-
dominantly by hardware imperfections and failures rather
than just system size. Susceptibility to noise and error remains

uantum computers have rapidly advanced from lab-
oratory curiosities to full-fledged systems operating
with dozens of interacting information carriers called
qubits. In 2019, researchers at Google became the first
to demonstrate quantum supremacy'—a quantum

the Achilles” heel of quantum comput-
ers and ultimately limits the algo-
rithms they can run. Researchers are
working to improve their devices’ per-
formance through passive means like
circuit design, but they’re also pursu-
ing active measures; mitigating hard-
ware errors through quantum error
correction (QEC) has driven research
for decades. The complexity and re-
source intensity of QEC—the set of al-
gorithmic protocols necessary to ensure errors are identified
and corrected —has motivated consideration of complemen-
tary techniques that enable augmented performance without
that computational overhead.

Quantum firmware is a generalized designation for a set
of protocols that connect quantum hardware with higher,
more abstract levels in the quantum computing stack (see fig-
ure 1). More specifically, quantum firmware stipulates how
physical hardware should be manipulated to improve stabil-
ity and reduce various error processes—in essence, “virtual-
izing” the underlying imperfect hardware. Higher abstrac-
tion layers in the quantum computing stack then interact with
qubits whose performance is different than that of the qubits
in the bare hardware.? (For more on quantum computing ar-
chitectures, see the article by Anne Matsuura, Sonika Johri,
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and Justin Hogaboam, PHYSICS TODAY, March 2019, page 40.)

The choice of the term “firmware” reflects the fact that al-
though the routines are usually software defined, they reside
just above the physical layer in the stack and are effectively in-
visible to higher layers of abstraction. That approach to low-
level control resembles other forms of firmware in computer
engineering, such as DRAM (dynamic random-access mem-
ory) refresh protocols that stabilize classical storage hardware
against degradation caused by charge leakage. Such protocols
are responsible for scheduling, defining relevant control and
measurement operations, executing logic for actuation, and the
like. A user employing DRAM has little awareness of its pres-
ence or activity except in the small effects its execution has on,
say, memory access latency.

So that’s the “what.” But what about the “how?”

The underlying technology

Underpinning quantum firmware’s functionality is quantum
control,® a discipline that addresses the question, How can sys-
tems that obey the laws of quantum mechanics be efficiently
manipulated to create desired behaviors? Ultimately, quantum
control is concerned with how the classical world interacts
with quantum devices. It guides researchers in gaining infor-
mation about system dynamics through measurements and en-
ables useful performance in computing, sensing, and metrol-
ogy. (For more on quantum control see the article by Ian
Walmsley and Herschel Rabitz, PHYSICS TODAY, August 2003,
page 43.)

The field of quantum control largely owes its existence to
decades of research in nuclear magnetic resonance and electron
paramagnetic resonance, in which semiclassical magnetiza-
tions formed from nuclear or electronic spins are manipulated
by pulses of resonant RF or microwave radiation. In those dis-
ciplines, hardware imperfections limited the ability to spectro-
scopically characterize molecules. Then, in 1950, Erwin Hahn
demonstrated that a dynamic-control protocol now known as
the Hahn echo could mitigate the impacts of magnetic field in-
homogeneities on spectroscopic resolution. His discovery led
to the development of average Hamiltonian theory, which is
used to analyze the temporal evolution of spin systems, and of
dynamical decoupling, a technique for canceling the impacts
of unwanted spin interactions in molecules.*

Beginning in the 1980s, a parallel research discipline
emerged that sought to adapt the concepts and numeric tools
from control engineering to the strictures of quantum-
coherent devices. That included both the treatment of linear
systems, such as quantum harmonic oscillators,® and the de-
velopment of numeric techniques for using imperfect hard-
ware to effectively manipulate spin systems.® More recently,
quantum optimal-control methods have been extended to
more general Hilbert spaces and Hamiltonians” and have be-
come powerful tools for optimizing quantum experimental
system performance.®

Much like NMR, quantum computing hardware —whether
trapped ions, neutral atoms, superconducting circuits, or an-
other technology—generally relies on precisely engineered
light-matter interactions to enact quantum logic. (For more on
qubit technology, see the article by Lieven Vandersypen and
Mark Eriksson, PHYSICS TODAY, August 2019, page 38.) Those
operations constitute the native machine language; a timed
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FIGURE 1. THE STACK in a fault-tolerant quantum computer is
made of layers that correspond to levels of software abstraction.
At the top sits Quantum As A Service (QAAS), which represents
functions a user might interact with through, for instance, a cloud
service. Below that are quantum algorithms and applications that
are coded using developer tools that permit high-level abstraction.
The algorithms and applications are compiled on the third level to
enact circuits on encoded blocks. In fault-tolerant computing, that
enaction is performed on logical qubits encoded using quantum
error correction (QEC), although realizing the QEC code and other
associated tasks occupies a dedicated layer. Physical connectivity
between devices and compensation for any stray couplings are
accounted for in a hardware-aware compiler. The quantum firmware
layer, which is responsible for minimizing hardware error, resides
between that layer and the physical hardware. It handles all tasks
necessary for hardware calibration, tune-up, characterization,
stabilization, and automation. (Image courtesy of Q-CTRL.)

Gaussian pulse of microwaves on resonance with a super-
conducting qubit can act as an X operation, the quantum equiv-
alent of a NOT gate on a single qubit, whereas another pulse
may implement a controlled-NOT operation on a pair of
qubits, similar to a classical exclusive OR. An appropriately
constructed temporal and spatial composition of such electro-
magnetic signals makes up a quantum algorithm.

The physical correspondence between spin-%2 systems and
qubits builds a natural bridge for transferring quantum-control
techniques into quantum information in order to improve al-
gorithmic success despite hardware imperfections and ambi-
ent decoherence. One of the clearest efforts to explicitly incor-
porate quantum control into quantum computers was
articulated” by N. Cody Jones and coworkers at Stanford Uni-
versity in 2012. They introduced a so-called virtual layer that
sat between quantum hardware and higher-level algorithmic
abstractions in the quantum computing stack and leveraged



NMR-inspired composite pulsing.* Their foun-
dational work inspired the quantum firmware
layer described here. Researchers now have
greater clarity about both the utility of quantum
control and the structure of higher-level soft-
ware abstractions with which the quantum
firmware layer interacts.

Technical aims

Contemporary quantum firmware is charged
with implementing the following functionality:

»Error-robust quantum logic operations
that are supported by measurement-free open-
loop control.

»Measurement-based closed-loop feedback
stabilization at the hardware level.

»Microscopic hardware characterization for
calibration, noise identification, and Hamilto-
nian parameter estimation.

»Machine learning—inspired approaches to
realize autonomy for the above tasks in large
systems.

Open-loop control refers to feedback-free ac-
tuation akin to a timed irrigation system that
maintains a healthy lawn without information
on soil moisture or rainfall. It’s resource effi-
cient and has proved to be remarkably effective
in stabilizing quantum devices, both during
free evolution and during nontrivial logic oper-
ations.” When open-loop error suppression is
used in quantum computers, the instructions
for quantum hardware manipulation are re-
defined such that they execute the same math-
ematical transformation, but in a way that is ro-
bust against error-inducing noise, such as
fluctuations in ambient magnetic fields. The
suppression is typically realized by temporally
modulating the incident control fields that ma-
nipulate the physical devices (see the box on
page 32), and the modulation patterns may be
derived from Hamiltonian models or even
machine-learning techniques. Thus the control
solutions defined by quantum firmware consti-
tute an effective error-robust machine language
for manipulating quantum hardware.

In closed-loop feedback control, actuation
is determined by measurements of the system.
Its use is constrained by the destructive nature
of projective measurement in quantum me-
chanics. Several strategies may nevertheless be
employed for hardware-level feedback-based
stabilization; they all are designed to gain suf-

ficient information about the underlying system without de-
stroying encoded information needed in a computation. In
fact, QEC—the gold-standard approach for large-scale quan-
tum computers—is a form of closed-loop feedback that em-
ploys indirect measurement through ancilla qubits. The direct
integration of hardware-level feedback stabilization remains
an ongoing area of exploration with some exciting results.'
Hardware characterization, known as system identifica-
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FIGURE 2. QUANTUM FIRMWARE is an abstract layer of the computing stack
whose actions are orchestrated by an embedded microprocessor. The microprocessor
accesses cloud-computing resources for computationally intense tasks such as open-
loop-control optimization and virtualizes the hardware for its interaction with higher
layers of the software stack. In the conception shown here, the microprocessor sends
commands to programmable logic devices, such as field-programmable gate arrays.
Those devices are responsible for processing measurement results in real time for
physical-layer feedback stabilization, measurement-based decision making, and other
tasks. They also provide instructions to other hardware elements such as direct digital
synthesizers and arbitrary waveform generators. Arrows indicate communication
pathways between elements. (Image courtesy of Q-CTRL.)

tion in the control-theoretic literature, has benefited from a
large body of experimental and theoretical developments.
The underlying techniques complement external bench-
marking routines that quantify the hardware’s overall per-
formance by focusing on the determination of actionable mi-
croscopic information for system optimization and tune-up.
Noise spectroscopy, which is widely used as a complemen-
tary capability to noise suppression, provides information
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OPTIMIZED GATES FOR SINGLE-QUBIT LOGIC OPERATIONS

Existing medium-scale superconducting quantum computers provide
an ideal platform for studies of quantum control because they allow
for cloud access to advanced hardware. Using one such platform—a
cloud-based IBM quantum computer—the research team at Q-CTRL,
a quantum computing startup with facilities in Sydney, Australia, and
Los Angeles, California, has explored the efficacy of quantum-control
optimization in real systems. They employed specialized analog-layer
programming that permits direct control of physical signals.

As an example, we demonstrate how to make an effective ma-
chine language that defines quantum logic operations that are re-
silient against the typical sources of hardware instability. In the il-
lustration here, we show different techniques to produce gates that
perform a Pauli X “spin-flip” operation,

B} M DEFAULT
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which is the quantum mechanical analog of a classical NOT gate.
In each of the Bloch spheres shown, the quantum state—
represented by the locus of a unit-length vector on the sphere’s
surface—follows a path from the sphere’s north pole to its south
pole. However, the qubit subject to a default implementation
(panel a) takes a substantially different path from those of the two
qubits subject to error-robust pulses (panels b and c).

The Pauli X operation is implemented using a pulse of mi-
crowave radiation that enacts a control Hamiltonian

He(t) = ¥ (Q(t)eie®d).

Here dis a function of a and a', the lowering and raising operators for
the state of the superconducting qubit. (We treat only the two lowest
levels as an effective qubit.) The coupling term Q(H)e® = I(t) + iQ(t)
represents the control-pulse waveform, and the functions /(t) and Q(t)
therein represent user-adjustable controls.

In the default implementation of the X operation (panel a), /(t) is
composed of two sequential pulses that are approximately Gauss-
ian, with only a small component in Q(t). Those pulses largely drive
the qubit state along a meridian of the Bloch sphere. In a quantum
firmware protocol, the simple physical definition for X is replaced
with a new one that parameterizes the gate in terms of /() and Q(t).

Numeric optimization is used to minimize a cost function that en-
sures that the quantum logic gate is implemented correctly, even in
the presence of noise. The controls applied in panels b and c are de-
rived using H_(t) and take into account smoothing functions that en-
sure pulses can be faithfully transmitted from room-temperature
electronics into a dilution refrigerator where the qubits are housed.
Because of the error reduction incorporated into the control wave-
forms, qubit states subject to optimized controls take paths along the
Bloch sphere that are more complex than those taken by the default
qubit. Enacting those complex paths often requires a longer pulse.

The optimized controls described here are designed to imple-
ment the X operation in a manner that is robust against either errors
in the amplitude Q(t) or in the driving frequency thatimplements the
pulses. To test the control’s performance, it is repeatedly applied in
the presence of either quasistatic pulse-amplitude errors or pulse-
frequency (detuning) errors, and the gate’s infidelity—the probabil-
ity that a qubit state evolves to the wrong target—is measured (see
panels d and e). Even when large amplitude or detuning errors
were added to the applied pulse, each optimized solution shows a

flat response, which is a signature of robustness. The
control designed to be robust against dephasing
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(panel b) is indeed flat in the presence of dephasing
errors (panel e). Likewise, the amplitude-robust con-
trol response (panel ¢) is flat despite amplitude errors
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used in the design of open-loop controls. To implement it, a
qubit can serve as a sensor that when subjected to appropri-
ately designed time-domain control, probes noise at different
frequencies.

Hardware imperfections can be identified through various
techniques generally classified as Hamiltonian parameter esti-
mation. A simple implementation might allow for the determi-
nation of the coupling rates between physical devices and con-
trol fields and reveal transmission losses experienced by
signals en route to the qubits. More complex routines are com-
monly employed to determine the frequencies of unwanted en-
ergy levels in a device or to characterize unknown couplings
between qubits. The information obtained from such protocols
informs open-loop error-suppressing controls and dynamic
models for feedback-based stabilization.

Artificial intelligence—enabled autonomy, the final class of
techniques in quantum firmware operation, represents one of
the most exciting exploratory areas of research in quantum in-
formation. Scaled-up systems will require high-efficiency rou-
tines that can tune up, calibrate, optimize, and characterize the
underlying hardware with minimal user intervention. An in-
terdisciplinary effort integrating machine learning, robotic
control, and data inference is showing how adaptive measure-
ment routines may be deployed to reduce the number of de-
structive measurements required"'* and to enable rapid au-
tonomous system bring-up and operation.

Integration strategies

Any practical implementation of quantum control must be tai-
lored to the needs of a hardware system; each scheme will re-
quire a particular subset of the functions described above. But
the control techniques have much in common, and they are in-
creasingly being used in state-of-the-art experimental and
commercial-grade quantum computers. (See PHYSICS TODAY,
November 2020, page 22, for more about the commercializa-
tion of quantum computers.) Researchers have thus been mo-
tivated to organize the relevant functionalities into an identifi-
able abstraction layer. Creating that organizational structure,
however, is distinct from determining how quantum control
should be integrated into real systems.

One approach involves integrating the control functions
into their own encapsulated layer in the quantum computing
stack. In that conception, quantum firmware is responsible
for defining and executing all actions that bridge the gap be-
tween high-level abstractions, such as compilation or appli-
cation programming, and the many low-level quantum-
control routines customized for particular hardware systems.
Firmware can be embedded into appropriate computational
hardware to virtualize the underlying quantum-coherent
hardware. That is, the firmware changes the behavior and
performance of the hardware such that high-level abstraction
layers have no visibility into the “bare” performance of the
underlying hardware.

The implementation of a dedicated quantum firmware layer
brings several potential benefits. First, the development of effi-
cient high-level programming frameworks such as Cirq, Quil,
and Qiskit has led to an explosion of capability at the applica-
tion and algorithmic level. Building a framework to standard-
ize quantum-control integration may also encourage the
quantum-control and machine-learning communities to de-

velop more diverse technical solutions for efficient hardware
manipulation.

A dedicated firmware layer could autonomously orches-
trate quantum-control tasks that span different classical com-
putational hardware. Those processes could exploit local pro-
cessing to support automated scheduling and unsupervised
stabilization, distributed computing infrastructure to execute
computationally intensive optimization tasks, and low-latency
programmable logic to conduct real-time processing. For ex-
ample, a local microcontroller can, on a schedule, initiate a
cloud-based numeric optimization of a multiqubit gate (see fig-
ure 2). That solution can be used to seed a hardware-executed
tune-up of the final control waveform, which is then written to
embedded memory. Slaved to the microcontroller is a field-
programmable gate array that both directs signal-synthesis
hardware to output the waveform used to manipulate the
qubits and also processes measurement results from the qubits.
(A logically distinct “embedded operating system” always re-
mains that defines and enables the functionality of the classical
electronics in use.)

For the near term, researchers are exploring how the dis-
tinctions between layers in the emerging stack could be blurred
to deliver maximum performance. For example, it’s possible to
pursue a hardware—firmware co-design strategy to directly in-
tegrate certain critical tasks into the classical electronics™ while
others remain in the experimental software.

Opportunities may also arise to fundamentally rethink the
organization of quantum computer software stacks based on
the functionality provided through exploitation of quantum
control. The potential value of such approaches is evident in
hardware-aware compilation, in which optimal control is
used to efficiently produce high-fidelity hardware-optimized
logical blocks. Quantum algorithms may then be compiled
into a library of numerically optimized “analog” control se-
quences that would replace a smaller but more general set of
universal gates.™

System-level impacts

Regardless of how quantum firmware is realized, recent exper-
iments have made clear that the quantum-control functionality
encompassed therein could affect or even reshape higher ab-
straction layers. That’s because the virtualization produced by
quantum firmware fundamentally transforms the behavior of
the underlying hardware, especially as it pertains to the char-
acteristics of hardware errors.

Open-loop control strategies are broadly used to suppress
errors in state-of-the-art quantum computer hardware; for ex-
ample, in certain settings, DRAG (derivative removal by adia-
batic gate) pulses—an example of open-loop control—have
been shown to reduce gate errors in superconducting qubits by
approximately an order of magnitude compared with conven-
tional Gaussian pulses. More recent results demonstrate that
numerically optimized gates can mitigate the effects of hard-
ware imperfections in cloud quantum computers, thereby sup-
pressing pulse-amplitude, off-resonance, and cross-talk errors.
Those demonstrations are particularly powerful because the
error processes effectively addressed by quantum firmware
often generate far larger effects than one would expect from
best-case-scenario benchmark routines.

In both research-grade systems and publicly available cloud
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systems, best- and worst-case qubit error rates across a device
often differ by more than an order of magnitude. Those errors
can arise from fabrication variances and coupling inhomo-
geneities between qubits and the ambient electromagnetic en-
vironment. Quantum firmware homogenizes hardware per-
formance in space and time. Optimized quantum-control
operations implemented in real systems have brought error
rates for all qubits close to the best-case performance; likewise,
drift-robust controls can extend typical calibration windows on
cloud and laboratory hardware from 6-12 hours to more than
five days.’

Why do those improvements matter? To start, current algo-
rithmic compilers can improve performance by trading an in-
crease in compiled-circuit complexity for the ability to avoid
poorly performing devices. But in large-scale systems with
substantial performance variation, that compilation process
can become quite complicated, and shuttling information
around the worst-performing devices may require many more
gates and time steps. By homogenizing device performance in
space and time, quantum firmware can simplify higher-level
compilation protocols,’ thereby reducing the complexity and
duration of the implemented algorithm.

Quantum control will also have a long-term impact on the
performance of QEC. Both the hardware-level feedback stabi-
lization and open-loop control found in firmware exploit the
fact that noise processes often vary slowly in space and time;
those methods provide little benefit for truly stochastic errors.
On the other hand, QEC formulations generally assume statis-
tically independent error models. Thus quantum firmware
works in concert with QEC to correct for a broad range of error
types and effectively preconditions the properties of the resid-
ual errors to be compatible with QEC." But more than that, the
way in which quantum firmware closes the gap between the
best and worst performing qubits and reduces statistical corre-
lations in the residual errors'” actually reduces QEC’s resource
intensity. It's a win-win combination.

The future of quantum firmware

Quantum computing is complex, so algorithm designers and
end users need a framework through which they can effi-
ciently exploit quantum computers without having detailed
technical knowledge of the underlying hardware. They ex-
pect high-performance quantum hardware to be stable and
provide consistent outputs irrespective of small changes in
an algorithm’s structure. Quantum firmware enables those
capabilities.

Quantum-control demonstrations have confirmed im-
provements of about a factor of 10 in the performance of quan-
tum logic operations relative to naive gate implementations.’
Similarly, dynamic memory stabilization has extended qubit
lifetimes to time scales measured in minutes. In those settings,
the performance gains have been limited by either incoherent
processes or the capabilities of classical electronics, but both
are showing steady gains with time and specialization for the
quantum computing market. We therefore expect that control
systems and device performance will improve in parallel with
quantum firmware protocols.

The effect of using quantum-control technologies such as
error-robust open-loop control on algorithmic performance
can be quantified with benchmarks. One such benchmark is
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quantum volume, a metric that accounts for architectural fea-
tures, including hardware connectivity, and device-level pa-
rameters, such as the one- and two-qubit error rates across the
device.” Honeywell has claimed a quantum volume of 128
with just a handful of qubits compared with approximately 64
from IBM’s larger systems; the results demonstrate that hard-
ware performance is the primary bottleneck.

Improving both one- and two-qubit error rates by more than
a factor of 10, as has been demonstrated experimentally, would
have a massive impact on system-level performance. Those im-
pacts would be largest in devices with weak connectivity, where
the spatial rearrangement of qubit data requires many multi-
qubit swap operations. Device sizes are increasing rapidly —
Google and IBM have each released a road map to 1000-qubit
systems—and quantum control provides a means to ensure sys-
tem utility at the algorithmic level tracks with system size.

Ultimately, we believe that building and operating large-
scale quantum computers is effectively impossible without in-
tegrating advanced quantum-control techniques into a quan-
tum firmware abstraction layer. Autonomous vehicles, walking
robots, and advanced avionics systems have all demonstrated
the importance of dynamic control and automation. Similarly,
in quantum computing, advanced control-theoretic strategies
were instrumental in the calibration and tune-up of devices
used to achieve quantum supremacy. Many techniques from
the fields of machine learning and robotic control are likely to
improve performance and increase autonomy, thereby allow-
ing future quantum developers to confidently abstract away
the details of a computer’s underlying hardware.
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