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Human colon cancer cells. (Courtesy of the National
Cancer Institute, National Institutes of Health.)
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Materials scientists have been so successful in developing
and discovering materials that researchers in the field might
pause and ask ourselves what our next step is. Should we keep
looking for or developing that next material, with exactly the
right stiffness for some particular application? Or could we be
more clever?

What if we didn’t have to pick and choose from our arsenal
of materials? What if a material existed that was rigid in certain
situations and flexible in others, one that changed exactly when
required in order to perform specific functions? Such a material
may seem like science fiction, until we realize that many bio-
logical systems are, amazingly, able to perform a multitude of
tasks by dynamically adjusting their mechanical properties with-
out changing their composition. 

During an animal’s development, for example, the embryo
undergoes morphogenesis, a process in which a collection of
interconnected  cells— a  tissue— reshapes itself (see figure 1). To
do that, the tissue must transform from a strong, rigid system
to a flowing, fluidlike system in order to take on a new shape,
at which point it becomes rigid again. 

Unlike normal melting, the transformation can happen at a
relatively constant temperature and is well controlled. In the
morphogenesis of an embryo, the flowing tissue does not spill
and spread randomly but transforms into a particular new
geometry, necessary for healthy development. If materials sci-

entists ever hope to be as clever as bi-
ology, we will first need to understand
what allows such systems to function
in that way. But first, we must ask a
simple question: What does it mean
for one material to be more rigid than
another? 

Constraint counting
The question of what distinguishes
floppy and rigid materials turns out 
to be one of the oldest questions in
physics, and yet it is still not easily 

answered. James Clerk Maxwell asked the question in the 
mid 1800s while thinking about macroscopic structures of rods
and joints, such as truss bridges.1

He observed that a square frame made of four rods would
fall over if pushed. If one adds another rod along the frame’s
diagonal, however, it prevents the frame’s collapse, as shown
in figure 2a. Adding the rod transforms the frame from some-
thing floppy, which moves when pushed, to something stiff that
resists motion. One could even say that the frame transforms
from liquid-like to solid-like. But how does adding that rod cre-
ate such a fundamental change in the structure’s behavior? 

Maxwell explained it by imagining the frame as a collection
of degrees of freedom and constraints. The corners act as de-
grees of freedom because they can move in space, whereas the
rods constrain the corners to move only in certain ways. Be-
cause any motion of a corner point can be thought of as a set
of movements in each spatial  dimension— forward and back-
ward, up and down, or left and  right— the total number of de-
grees of freedom is the number of corner points, Npts, multi-
plied by the number of spatial dimensions, d. Assuming that
the  four- rod frame can move only in the  two- dimensional
plane, there exist Npts × d = 4 × 2 = 8 degrees of freedom. At the
same time, there are as many rods as there are points, which
yields 4 as the number of constraints, Nc. 

Maxwell showed that if one ignores trivial degrees of freedom,
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W hen a material is chosen or developed to fulfill
a specific function, it transforms from an object
into a tool. Concrete, for instance, is designed to
support structures, whereas rubber is designed
to stretch and bend. Wood is softer than steel

but stiffer than nylon. Over time, scientists have amassed, through
discovery and invention, naturally occurring and synthetic materials
for countless applications. The ones that are chosen depend on the
properties needed for the job. 

How can researchers geometrically

tune the extent to which a material

embodies a stiff or flexible structure?
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such as the translation or rotation of the entire structure, 
then the difference between the number of degrees of freedom
(DOF) and the number of constraints reveals whether the
structure is floppy or rigid. In our example, imagine that X is
that difference: X = d × Npts − Nc – (trivial DOF), which becomes
2 × 4 − 4 − (2 translational + 1 rotational DOF) = 1. Because 
X > 0, the structure is floppy and can collapse. But once a 
fifth rod is added, the equation changes to X = 2 × 4 − 5 − 
(2 translational + 1 rotational DOF) = 0, and the structure be-
comes rigid. More precisely, the system is isostatic, meaning
that the number of (nontrivial) degrees of freedom exactly equals
the number of constraints.

If the value of X contains so much information, it must be
important. But what does it represent physically? In addition
to the difference between the degrees of freedom and number
of constraints, its value represents the number of (again,  non-
 trivial) ways the degrees of freedom (the corners of our frame)
can be moved and yet require no mechanical energy. That is, X
represents the number of zero modes—ways in which the de-
grees of freedom can be moved without altering the system’s
energy. If any such nontrivial zero modes exist, the system is
floppy. If none exist, it’s rigid.

A little more than 100 years after Maxwell published his
work on the stiffness of frames, Christopher Calladine refined
the method to take into account “states of  self- stress”—special
cases in which individual rods are tensed or compressed while
the system as a whole is in mechanical equilibrium.2 Ever since,
the resulting simple, powerful  Maxwell– Calladine  constraint-
 counting method has been instrumental in mechanical engi-
neering for building sturdy structures that can withstand ex-
ternal forces.

Constraint counting explains why two structures made of
the same components, such as a collection of steel rods, can be-
have quite differently under stress. But how do we explain why
steel itself is a rigid material? Remarkably, constraint counting
is useful in predicting not only how rigid macroscopic struc-
tures can be but also whether microscopic structures, such as
a configuration of atoms, will produce a rigid material. In fact,
it turns out that the classical  solid- state theory of stiffness in an
atomic crystal is essentially identical to constraint counting. 

In the classical picture, a solid is a collection of atoms arranged
in a repeating, crystalline pattern. The structure remains cohe-
sive because each atom interacts with its neighbors through re-
pulsive and attractive forces. Although no rods connect atoms
to each other, the interactions among the atoms act as con-
straints that keep them from getting too close to or too far from

each other. Moreover, the interactions are usually short range,
so atoms only weakly interact with other atoms that aren’t
nearby. A representation of that  solid— using dots to represent
atoms and lines to represent  constraints— looks quite similar
to the macroscopic frame in the left panel of figure 2b. 

Coordination number and jamming
One convenient aspect of a large system, such as a collection
of atoms in a crystal, is that researchers can use statistics to an-
alyze it. In a cubic solid, for instance, all atoms but those on the
edges of the solid have six neighboring atoms; it would re-
semble a 3D version of figure 2b. The bulk of the system is 
so large, though, that the average coordination  number— the
number of neighbors per  atom— is still close to six. Instead of
counting the constraints, or bonds, individually in the solid,
one can calculate their number, at least on average, by multi-
plying the number of bonds attached to each atom by the total
number of atoms and then, to avoid counting bonds twice, di-
viding by two. 

The number of bonds equals 1⁄2〈z〉 times the number of atoms
Natoms in the system, where 〈z〉 is the average coordination num-
ber. In three dimensions the number of nontrivial degrees of
freedom equals d × Natoms – 6. When the expressions are equal,
the system changes from floppy to rigid. That condition thus
can be used to find the value of 〈z〉 that sits at the transition
point: 1⁄2 × 〈z〉 × Natoms = d × Natoms − 6, for which 〈z〉 = 2d – 12/Natoms.
Because Natoms ≫ d in a large system, one can ignore the last
term and get 〈z〉 = 2d. 

So if the average number of neighbors is greater than or
equal to twice the dimension, the system is rigid; otherwise, it’s
floppy. That’s a powerful way to think about constraint count-
ing because it means that someone can discern whether a lattice
is floppy or rigid simply by knowing the number of neighbors
a particle has in the lattice. 

Not all materials are composed of a periodic lattice, though.
Some of the most interesting and important materials, such as
plastic and glass, are disordered (see the right panel of figure 2b).
In 1985 theorist Michael Thorpe led a partnership that success-
fully adapted the ideas of Maxwell and Calladine to amor-
phous solids,3 which can have regions of high and low coordi-
nation numbers. 

That  coordination- number perspective sheds light on why
some systems seem to spontaneously become solid-like, with-
out any change to their constituent particles, their temperature,
or the extent to which the system of particles is disordered.
Have you ever tried to pour grains of rice out of the corner of

FIGURE 1. EPITHELIAL CELLS in a Drosophila (fruit fly) embryo flow during morphogenesis. Each frame in this movie sequence, which 
proceeds from left to right, is separated by about 1.2 seconds. In the first two frames, the cell marked with a red dot remains roughly 
stationary in space, as the tissue remains solid-like. Once the tissue begins to flow, the cell moves rapidly downward, as seen in the final 
three frames. (Adapted from ref. 18; see also H. Evarts, “New View on How Tissues Flow in the Embryo,” Columbia University Engineering
news release, www.engineering.columbia.edu/press-releases/kasza-tissues-flow-embryo.)
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a bag? Or let coffee beans pour from a hopper at the grocery
story? In both cases, the particles  flow— unless they don’t.
Sometimes they get stuck, transforming the system from one
that behaves like a fluid to one that behaves like a solid. That
jamming transition happens when the particle density increases
above a critical value4,5 (see figure 2c).

Mechanical metamaterials
The insights about rigidity suggest an exciting idea: One can
control the mechanical properties of a system simply by con-
trolling its geometry. That idea underlies a class of materials
called mechanical metamaterials. They are manmade structures
whose behavior under external forces depends on the way
their components are arranged, not on their composition. Usu-
ally that kind of material relies on the geometry of a precisely
constructed subunit built into the material and is the counter-
part to optical metamaterials (see the article by Martin Wegener
and Stefan Linden, PHYSICS TODAY, October 2010, page 32).

By considering only its geometrical properties, researchers
can design the material to behave in unusual ways, such as ex-
hibiting auxetic  behavior— when the material is compressed in
one direction, it also shrinks in the perpendicular direction, as
shown in the first two columns of figure 3. It resists fracture
and absorbs energy, mechanical properties that are useful in
such applications as packing materials, body armor, and  shock-
 absorbing materials.

In designing mechanical metamaterials, researchers have
applied  Maxwell– Calladine counting in ingenious ways. For
example, some have created materials whose zero modes lie on
their boundaries, where the average coordination number dips
below the critical value, or come into play only when the ma-
terial is deformed in a particular way. Those materials are ac-
tuatable, meaning they change their behavior rapidly upon re-
ceiving a specific (in this case, mechanical) signal.6

Rigidity in tissues
Materials scientists have gained an understanding about the
physical origin of rigidity in everything from sand piles to
bridges and opened the door to a whole new class of materials.
Seemingly fantastical  ideas— a robotic hand, for instance, that
can easily deform and flow around an object, only to quickly
become rigid again to pick up the  object— are now possible be-
cause of our understanding of how constituents of a material
can jam.7 To revisit the original focus of this article, it appears
that we are making progress toward creating materials that act

like biological tissues during the process of morphogenesis and
dynamically change their mechanical properties.

But there’s a surprising catch. Look again at figure 1 and
you’ll notice something remarkable. Like a system of rigid rods
or atoms, the  fruit- fly tissue has some number of degrees of
freedom (namely, the cell positions) and some number of con-
straints (namely, the size and shape of each cell and the fact
that the tissue must remain continuous and not open holes in
its structure) that restrict the movement of those degrees of
freedom. 

But unlike other systems of rods or atoms, when the cellu-
larized tissue undergoes changes to its rigidity, its number of
degrees of freedom and constraints do not change. That is, none
of the coordination number, temperature, or degree of disorder
has to change significantly for a tissue to go from an arrested
state to a flowing state.

In retrospect, the nature of the transformation is not surpris-
ing from a biological perspective. It would be inefficient and
difficult for a tissue to often need to change its  density— for ex-
ample, via cell death or  proliferation— in such a rapid and pre-
cise manner (it does happen, though; see PHYSICS TODAY, June
2017, page 19). In fact, other biological systems, such as net-
works of collagen fibers, behave similarly. They do not change
their connectivity but can undergo changes in stiffness. So
counting degrees of freedom and constraints in those systems
would not do us any good in figuring out whether they are stiff
or soft. What, then, is controlling the rigidity in biological tis-
sues and collagen networks? 

 Biopolymer- network models
We have more collagen in our bodies than any other protein.
The collagen proteins come together to form fibers that then
connect to each other to form a  higher- dimensional mesh. The
resulting collagen network is, in vertebrates, the primary com-
ponent of the extracellular matrix (ECM), a dense composite of
molecules that surrounds cells and tissues and gives them
structural support. 

Much like our schematics of Maxwell’s frame and an atomic
solid, a schematic of the ECM also looks like a collection of rods
connected at joints. The resemblance makes it again possible to
count the number of degrees of freedom and constraints in the
matrix in order to estimate the coordination number, or aver-
age number of connections per joint. Studies of collagen net-
work images reveal that their average coordination number is
around 3.4. That’s less than the value needed for structural

a b c

FIGURE 2. FRAMES AND FORMS. (a) With fewer constraints than degrees of freedom, the top frame is floppy and collapses when pushed.
With an additional rod (red) on the diagonal, the bottom frame has an additional constraint, such that the structure remains rigid under pressure.
(b) The crystalline solid on the left has vertices (atoms) embedded in a regular grid. The vertices in the amorphous solid on the right do not 
lie on a lattice. (c) The configuration of particles in the left panel allows them to flow. On the right, the particles are in a jammed, solid-like
configuration.
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rigidity in both two and three dimen-
sions, as we saw earlier, and it means
that those networks should always be
expected to be floppy. 

Even without changing their connec-
tivity,  however— by, say, adding, re-
moving, or rearranging  fibers— those
networks can transition from weak and
floppy to sturdy and rigid. In fact, that
ability is biologically important, as many
experiments have shown that the stiff-
ness of the ECM acts as a signal to tissue
cells. Depending on the ECM stiffness,
the cells may be prompted to change or
maintain their behavior.8

To help understand the mechanical
properties of such networks, researchers
often use  spring- network models, in
which collagen fibers are represented as
springs connected at points. Indeed, the
rod considered in the models above can
be thought of as a stiff, unbendable
spring. The use of a spring allows us to
explore its rodlike limit or to see what
happens when connections between
points are allowed to stretch or com-
press, much like real biological fibers.
The energy it takes to compress or stretch
a spring depends (quadratically) on
how far away the spring length is from
its preferred, or equilibrium, length.

Using such a model, researchers find
that a floppy network becomes rigid
when at least some of its springs are not
able to reside at their preferred lengths. Importantly, that hap-
pens when the network is sufficiently strained. The network
does not become more crowded, as in a jammed system, or
cooler and more ordered, as in a traditional  liquid- to-solid
phase transition. Rather, the network experiences a geometric
incompatibility. It simply cannot accommodate the newly im-
posed shape.9,10

Vertex models of tissues
Although intriguing, the emergence of rigidity in collagen net-
works does not immediately seem applicable to tissues. For
one thing, a tissue is a collection of cells, not interconnected
fibers. Even so, if physicists are good at anything, it’s figuring
out how to represent a system as a collection of springlike 
objects.

One such class of tissue representations is that of vertex mod-
els. They describe tissues  as— you guessed  it— a network of
points, or vertices, connected by edges. In this case, though, the
polygons created by the vertices and edges represent cells. In
many vertex models, it is not the edges that have preferred
lengths, as in a spring network, but the polygons (cells) that
have preferred shapes. 

Real cells can be surprisingly polygonal, with straight, count-
able sides, and tissues can sometimes even map almost exactly
to a special type of vertex model called a Voronoi diagram. The
locations of edges and vertices in a Voronoi diagram are deter-

mined directly from the locations of the cell centers, as shown
in figure 4a. The edges of each cell in a Voronoi diagram enclose
the set of points whose distances to that cell’s center are less
than or equal to the distance to any other.

Furthermore, the idea that cells have preferred shapes comes
directly from biology, which tells us that cells, being filled with
water and molecules, are fairly incompressible and vary in their
elasticity and affinity for sharing edges with other cells. If cells
prefer contact with other cells, their edges may be long and
their shapes oblong, whereas if they prefer little contact, they
are more circular.

In the same way that a floppy spring network becomes rigid
when its springs can no longer achieve their preferred lengths,
models for confluent  tissues— those with no gaps between
 cells— transform from flowing, fluidlike states to rigid, solid-
like states when their cells can no longer achieve their preferred
shapes 10– 12 (see figure 4c and the article by Ricard Alert and
Xavier Trepat, PHYSICS TODAY, June 2021, page 30). Amazingly,
researchers have observed that simple, geometric marker of
rigidity in experiments on real tissues. In those experiments,
the shapes of cells are directly measured and used to correctly
predict the tissue’s rigidity.13,14

Origami and the hunt for global rigidity
Researchers have now established that both collagen networks
and confluent tissues have rigidities that can be tuned using
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FIGURE 3. MECHANICAL METAMATERIALS. Three mechanical metamaterials made of 
the same type of rubber but with distinct geometries produce distinct behaviors under 
compression. Each column represents a structure, initially relaxed (top), with a unique hole
shape. Whereas the hole shapes in the first two columns lead to similar behavior under 
compressive stress, the geometry of the holes in the last column result in a much different
final configuration. The  center- to-center distance between the holes is 10 mm in the 
relaxed configurations. (Adapted from J. T. B. Overvelde, S. Shan, K. Bertoldi, Adv. Mater. 24,
2337, 2012.)
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parameters that represent inherent, geometric  quantities—
 fiber length and cell shape, respectively. The process pro-
vides a way to design mechanical metamaterials with dy-
namic mechanical properties. It also brings us one step closer
to creating materials that behave like real biological systems.

Yet an overarching question remains: Why doesn’t con-
straint counting work to predict rigidity in those systems? Put
another way, can we know when  constraint- counting argu-
ments will work and when they won’t?

One research field that is providing clues to that mystery 
is the study of origami. Given a sheet of paper that can be
folded only along a predetermined set of lines, how many final,
folded configurations exist? Can the paper move freely from
one folded state to another, analogous to the way cells in a 
liquid-like tissue can rearrange and flow? Or is the paper forced
to take on one stable configuration, more like cells in a solid-
like tissue? 

It might seem useful to apply constraint counting to that
system because it is composed of edges (folds) and vertices (in-
tersections of folds). But just as in the cases of spring networks
and confluent tissues, counting arguments do not correctly
predict rigidity. Researchers have now discovered that the zero
modes identified via constraint counting are specifically modes
that do not affect the constraints to first order in a Taylor series
expansion of those constraints. In some cases, however, although
the  first- order term in the expansion is zero,  higher- order terms
may not be. 

In other words, because constraint counting is capable of
predicting rigidity only to first order, it fails in cases where
 higher- order terms are important. Constraint counting turns
out to be a good approximation for rigidity in some  cases—
 which is why it seems to work for  them— but in others, it’s just
not good enough, and one needs to investigate how deforma-

tions of the degrees of free-
dom affect the constraints
at higher order.15

Mathematicians and
physicists are working to
figure out exactly when
one can use constraint
counting and when one
needs to go a step further.
But already, evidence is
showing that the onset of
rigidity in confluent tis-
sues may be explained by
using  higher- order terms
in an expansion of the sys-
tem’s constraints.16

What’s next?
The potential for a new
material, whether biologi-
cal or bioinspired, relies
on understanding what
truly determines structural
integrity across a broad
range of systems and in
novel environments. 

Understanding rigidity
has applications in battling diseases. Cancer researchers are
learning how important maintaining healthy mechanical prop-
erties of cells, tissues, and the ECM is to controlling metasta-
sis.17 For example, in the image on page 30, thanks to the stain-
ing of E-cadherin, a protein on cell–cell boundaries, one can
make out cell edges in green. These are human colon cancer cells,
and as they become more migratory and invasive, they un-
dergo a transition that is marked, in part, by a change in shape.
By beginning to develop a general framework for rigidity,
which includes the novel behavior observed in fiber networks
and confluent tissues, materials scientists are already produc-
ing interdisciplinary discoveries and ideas. Ultimately that will
lead us toward healthier, more sustainable lives.
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FIGURE 4. VERTEX MODELS for epithelial tissue. (a) A layer of tissue showing the cell membranes. The
inset pictures a Voronoi tiling (green edges) constructed using the cell centers. The constructed edges, each
consisting of points equidistant from the nearest cell centers, almost exactly match the cell boundaries.
(Adapted from M. L. Zorn et al., Biochim. Biophys. Acta Mol. Cell Res. 1853, 3143, 2015.) (b) A  fruit- fly wing
during morphogenesis. The inset shows the cell membranes, overlaid with polygonal tiling. (Adapted from
M. Merkel et al., Phys. Rev. E 95, 032401, 2017.) (c) In this schematic of the  vertex- model phase diagram,
above a critical value (red dot) for the preferred cell “shape”—the ratio of the average cell perimeter to the
square root of the area that the cells would like to achieve— the tissue is fluidlike, and below it is solid-like,
despite no change to the tissue’s density or coordination number. (Adapted from ref. 12.)


