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The development of mathematical tools
for understanding  many- particle sys-
tems was one of the greatest achieve-

ments of 19th- century science. Extract-
ing macroscopic properties of a gas by
tracking the random motions of each in-
dividual atom remains an impossible
feat. Statistical mechanics provided a
framework for properly averaging over
the individual particles’ motions and un-
derstanding how they lead to collective
macroscopic properties such as temper-
ature and pressure.

But disorder takes many forms.
Whereas gas molecules bouncing around
a bottle sample the phase space of possi-
ble positions and velocities, the mole-
cules that make up that glass or plastic
bottle are frozen in disarray, trapped far
from equilibrium. Explaining how those
disordered molecules ended up stuck in
a particular configuration and how that
connects to any macroscopic properties
is currently beyond the reach of statisti-
cal mechanics.

Giorgio Parisi is to receive half of this
year’s Nobel Prize in Physics for finding
order in seemingly disordered complex
systems. Among other significant contri-
butions, he solved a model of a particular
type of disordered system, spin glasses.1
“By attacking the problem analytically
and being able to solve it, he found a dif-
ferent paradigm for what ordered phases
can be,” says Leticia Cugliandolo, a pro-
fessor at Sorbonne University in Paris.
The underlying structures he found have
helped researchers tackle seemingly in-
tractable problems in neural networks,
 hard- sphere jamming, and protein fold-
ing, among other research areas.

A frustrating puzzle
Dilute magnetic alloys were created in
the 1950s to experimentally study inter-
actions between magnetic ions. They con-
sisted of a few magnetic atoms dispersed
in a nonmagnetic  material— for example,
manganese in zinc oxide. When impurity
levels were low, the materials behaved as

expected. But when the concentration of
magnetic ions reached a few percent,
measurements of the materials’ magnetic
susceptibilities and specific heats as func-
tions of temperature yielded features that
suggested a phase transition.

As in a ferromagnet, a magnetic alloy’s
spins become frozen in a particular config-
uration below a certain critical tempera-
ture Tc. But whereas a ferromagnet’s spins
are aligned, those in alloys were seem-
ingly random (see the article by Daniel S.
Fisher, Geoffrey M. Grinstein, and Anil
Khurana, PHYSICS TODAY, December 1988,
page 56). That frozen disorder led to the
alloys being called spin glasses.

The randomness in spin orientations
arises because the ions’ positions are ran-
domly distributed and their interactions
can be ferromagnetic or antiferromag-
netic. Those constraints make it impossi-
ble to minimize all the interaction ener-
gies simultaneously, and the spins are
said to be frustrated (see the article by
Roderich Moessner and Art Ramirez,
PHYSICS TODAY, February 2006, page 24).
Without a best configuration, the system
ends up in one of the many seemingly
random  good- enough options.

Accounting for the properties of spin
glasses piqued the interest of theorists,
notably Philip Anderson and Sam Ed-
wards. (Anderson wrote a  seven- part
column in PHYSICS TODAY about the his-
tory of  spin- glass research that includes
more detail than this story; the first in-
stallment appeared in the January 1988
issue on page 9.) Compared with other
disordered systems, such as structural
glasses and polymers, spin-glass systems
seemed as though they might be amenable
to a simple and solvable model because
their disorder is baked into their fixed 
interactions.

In 1975 Anderson and Edwards used
the random Heisenberg Hamiltonian,
H = ∑ Jĳ Si · Sj, to describe an arrangement
of spins Si that can point in any direction.2
The interaction strengths Jĳ decrease with
separation and, importantly, can take on

both positive and negative values, thereby
encompassing both ferromagnetic and
antiferromagnetic spin pairings.

Calculating the system’s thermo -
dynamic properties required averaging
the logarithm of its partition function Z
over many sample configurations. To do
it, Edwards devised the replica method,
which involved taking the average of
many versions of the  system— replicas—
 that have the same interaction matrix J.
The model yielded a cusp in the magnetic
susceptibility at the phase transition, in
agreement with experiments. It also pro-
duced features not seen in experiments,
including a cusp in the specific heat.

To gain more insight, David Sherring-
ton and Scott Kirkpatrick simplified the
model further.3 They gave the spin inter-
actions infinite range, thereby creating a
 mean- field model, and replaced the
Heisenberg spins with Ising ones that
could point in only two directions, up
and down.

The simplification hoisted a glaring
red flag: negative entropy. Says Sher-
rington, “There is a known pathology 
for classical continuous variables that
when you go to zero temperature, the
entropy can become negative.” The neg-
ative entropy seen at zero temperature
with Heisenberg spins should have dis-
appeared with discrete Ising spins. The
persistence of negative entropy in the
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 Sherrington– Kirkpatrick model in-
dicated a serious problem.

Unexpected structure
The culprit was  replica- symmetry
breaking.4 Edwards and Ander-
son had assumed, correctly, that
below Tc a particular spin’s orien-
tations in different replicas α and
β would be  correlated— meaning
qαβ = 〈S i

α · S i
β〉 was nonzero for

α ≠ β. But they also presumed that
any two replicas would yield the
same result, qαβ = q, after they av-
eraged over all the spins. In fact, the
situation was more complicated.

How the symmetry was broken,
however, remained unclear. “The
problem was hanging around with vari-
ous people trying to think, What had we
done wrong?” says Sherrington, a profes-
sor emeritus at Oxford University. “And
that’s where Parisi came out of the blue
with this fantastic new idea, which solved
the problem.” His mathematical ap-
proach, published1 in 1979, fixed the neg-
ative entropy issue. It also enabled pre-
dictions of  spin- glass properties, such as
magnetic susceptibility, that turned out
to be correct.

“He found a mathematical solution 
of the problem, much more advanced
than the previous one,” says Hélène
Bouchiat, a director of research at the
Laboratory of  Solid- State Physics, a joint
research unit of the CNRS and the Uni-
versity of  Paris- Saclay. “Mathematicians,
I think, thought he was completely crazy.”
To calculate the system’s free energy
F = −kBT ln(Z), where Z is the partition
function, Parisi and others followed Ed-
wards and Anderson’s strategy of using
the identity

But in the  spin- glass problem, m is the
number of replicas, and researchers
struggled with the implications of send-
ing that value to zero.

Undeterred, Parisi forged ahead into
the  zero- dimensional space where the
matrix containing the spin correlations
qαβ resided. (Those correlations appear in
the calculation of Z.) The analytic proce-
dure he devised for dealing with such ob-
jects produced a stable and consistent de-
scription of the  Sherrington– Kirkpatrick
spin glass. Although the deeper meaning
of the approach is still not fully under-

stood, the solution’s accuracy has since
been rigorously validated.

A phase transition is normally ac-
companied by a change in an order
 parameter— a value characterizing the
system’s degree of  structure— usually
from zero to nonzero. In a ferromagnet,
that value is the magnetization, which is
produced by spins aligning below Tc.

Parisi’s order parameters qαβ, of which
there are infinitely many, instead mea -
sure the amount of overlap between two
states. As expected, comparing a state
with itself yields the largest overlap,
q0 = qαα. But surprisingly, as Parisi and his
collaborators showed in 1984, the over-
laps between the rest of the seemingly
unconnected states weren’t random.5

The most similar nonidentical states had
overlap qαβ = q1 < q0, followed by q2 < q1

for the  next- closest states, and so on.
As illustrated in figure 1, the set of

overlaps is ultrametric in  structure—
 they satisfy the strong triangle inequal-
ity, qαγ < max(qαβ, qβγ). The number of
nodes between two states reflects their
amount of overlap. For example, any two
states of the same color in the figure have
the same amount of overlap, q1. A red
and an orange state have the  next-
 highest overlap, q2, the same as a blue
and a green state. The branches of the ul-
trametric tree appear as the system is
lowered below Tc and divide further and
further as the temperature  decreases— a
reflection of the  free- energy landscape
becoming increasingly rugged, with more
and deeper minima to trap the system.

The  spin- glass cornucopia
In simulations to investigate the  zero-
 temperature entropy and other observ-

ables in spin glasses, Sherrington
and Kirkpatrick encountered an
obstacle: Once a spin glass settled
into a local minimum, they could-
n’t efficiently explore its rugged
 free- energy landscape for other
stable states. From that starting
point, changing just a handful of
spins always increased the sys-
tem’s free energy, leaving it on the
steep slope surrounding the mini-
mum. Parisi’s solution made it
possible to show that the energy
barriers between states grew with
N, the total number of spins. Any
effort to systematically search the
landscape of a  many- spin system
would be futile.

Still,  real- world and simulated spin
glasses manage to form in a wide variety
of stable states. And heating a system
into its disordered phase and then re-
cooling it allows it to fall into different
minima without getting stuck in a par-
ticular one. Repeating that enough times,
Kirkpatrick realized, would map the
landscape.

Using that insight he, Daniel Gelatt,
and colleagues demonstrated that such
simulated annealing could be applied
to other problems of combinatorial
 optimization— that is, finding the best so-
lution from many possibilities.6 One ex-
ample they considered was the “traveling
salesman” problem, which involves find-
ing the shortest route a salesman could
take to visit N cities, each exactly once,
and then return home (see figure 2a). The
number of possible routes is on the order
of N!, which quickly becomes intractable
for even the most powerful computers.
But even with thousands of cities, simu-
lated annealing almost always effectively
and efficiently finds the optimal solution,
or at least a nearly optimal one.

The traveling salesman problem is
just one of many combinatorial opti-
mization problems, some of which are of
significant practical importance.  Air-
 travel routes,  supply- chain networks,
 computer- chip design, and distribution
logistics all require solving similarly
complicated problems. Biological prob-
lems such as finding folded protein con-
figurations (see figure 2b) also benefit
from such search techniques.

In the early 1980s John Hopfield,
then a neuroscientist at Caltech, was
studying neural  networks— neurons con-
nected by  synapses— and how their col-

ln Z = lim .Z   −1
mm→0

m
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FIGURE 1. AN ULTRAMETRIC TREE  describes the
 underlying organization of  spin- glass states, represented
by colored circles. The number of nodes separating two
states indicates how similar they are. Any two states of
the same color have the same amount of overlap,
whereas a red and an orange state have less  overlap—
 which is still more than either would have with a blue or
a green state. (From P. W. Anderson, PHYSICS TODAY, July
1989, page 9.)



DECEMBER 2021 | PHYSICS TODAY 19

lective behavior could result in phenom-
ena such as memory formation. With
neurons and synapses taking the place of
spins and their interactions, respectively,
Hopfield’s network had a form that
closely mirrored that in the  Sherrington–
 Kirkpatrick model. The ultrametric struc-
ture of the solutions can also describe
patterns in memory formation, in both
people and computers.

Applying Parisi’s formulation to
Hopfield’s model was a gateway for

many theorists. “To those of us who knew
about spin glasses, there was a great deal
of similarity with what we’d been work-
ing on, and the opportunity to move in
that direction,” says Sherrington.

A natural question is whether  spin-
 glass techniques can be applied to more
ubiquitous structural glasses. Although
some of the same ideas are relevant,
namely disorder and frustration, the more
familiar glasses have an added level of
complication: Their disorder is not
quenched. Once a spin glass’s magnetic
moments are in place, their interactions
are fixed. But the components of other
glassy  systems— be they molecules,
grains, or biological  materials— move
around as they approach a glassy state,
so their interactions are always evolving.

“In a sense, the ruggedness of the  free-
 energy landscape of the fragile glasses is
even more complex than for the spin
glasses,” says Cugliandolo. Still, they share
many properties, and some of the same
tools can be applied. Parisi and his col-
laborators have used the replica method
to exactly solve  structural- glass prob-
lems in infinite spatial dimensions. Their
 mean- field solutions show that such
glasses have a  so- called Gardner transi-
tion, a nonequilibrium phase transition
regarding the structure of  free- energy
basins, that was first identified in spin
glasses by Elizabeth Gardner in 1985.

The cavity method, an iterative process
developed by Parisi, Marc Mézard, and
Miguel Virasoro as a mathematical alter-
native to the replica method, has been
applied algorithmically to problems in
constraint satisfaction, information the-
ory, and other areas. Indeed, a wide range
of fields that deal with complex inter -
action networks have benefitted from
 spin- glass concepts and methods, in-
cluding economics, ecology, and evolu-
tion.7 And the list continues to grow.

A universal scientist
Parisi’s work on spin glasses and  replica-
 symmetry breaking has contributed to
the understanding of complex and dis -
ordered systems in a range of fields. But,
says Cugliandolo, “He has worked in so
many different branches of physics and
made important contributions to all of
them, so I think this was also very impor-
tant in the award.”

With researchers pursuing more siloed
and specialized problems, it’s increas-
ingly rare to hear about physicists mak-

ing such broad contributions. But as a
field theorist, Parisi has found wide-
ranging applications for his skills. “He’s
mentored a huge number of people who
have gone all over the world and made
great contributions in many different
fields,” says Andrea Liu, a professor at the
University of Pennsylvania in Philadel-
phia. “He’s very encouraging to people
and works with students really well.”

Parisi first made a name for himself in
quantum chromodynamics, the study of
interactions between quarks and gluons.
He and Guido Altarelli developed a quan-
titative description of inelastic scattering
among quarks and gluons; their 1977
paper on that work is Parisi’s most cited.8

Perhaps the clearest connection be-
tween Parisi’s contributions and the other
half of the Nobel Prize recognizing climate
modeling (see page 14 of this issue) is his
work on stochastic resonance and turbu-
lence.9 He and his collaborators found
that in nonlinear systems, just the right
amount of noise combined with periodic
forcing can generate a positive feedback
loop and unexpected behavior. In particu-
lar, solar radiation and noise from oceanic
and atmospheric dynamics cause large,
seemingly paradoxical periodic temper-
ature variations on the order of 10 °C.

Parisi’s willingness to tackle complex
problems has led him to make many fun-
damental contributions, and his Nobel
Prize celebrates that type of work. “These
are ideas that come from physicists work-
ing in the way that physicists do,” says
Sherrington. “If he hadn’t been working
on very basic things, asking these very
interesting questions, you wouldn’t have
gotten to the other places that have been
so useful.”

Christine Middleton
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FIGURE 2.  SPIN- GLASS CONCEPTS
can be used to understand problems in a
wide range of fields. (a) In the “traveling
 salesman” problem, one must find the
shortest route connecting a set of cities.
With more than a handful of cities,
 systematically solving the combinatorial
 optimization problem becomes
 prohibitively expensive on a computer.
Simulated annealing, a computational
technique inspired by spin glasses,
 significantly reduces that cost. (b) Proteins,
like spin glasses, have complicated  free-
 energy landscapes with many deep
 minima. Similar techniques can be used 
to study the dynamic evolution of both
 systems. (Adapted from F. U. Hartl, 
A. Bracher, M.  Hayer- Hartl, Nature 475,
324, 2011.)


