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A t their heart, proteins are much like
any other polymers: flexible linear
chains of amino-acid monomers

drawn from a library of just 20 or so
building blocks. But unlike synthetic
polymers, which tend to flop around sto-
chastically, proteins reliably fold into
characteristic three-dimensional shapes.
The diversity of those shapes gives rise
to the complexity of the biological world.

Uncovering the relationship between
amino-acid sequence and folded struc-
ture has been a grand challenge of the
past half century, with connections to cell
biology, chemistry, biophysics, and med-
icine. To date, more than 180 000 protein
structures have been made available to
the world in the Protein Data Bank
(PDB). But even that enormous resource
barely makes a dent in the tens of mil-
lions of proteins known to be encoded by
genes across all living species.

Last November, as part of the Critical
Assessment of Structure Prediction
(CASP) project, researchers at DeepMind
in London showed that their AlphaFold2
model had made astonishing progress.
Given a protein’s amino-acid sequence,
AlphaFold2 could often predict its struc-
ture with most atomic positions correct
to within an angstrom—less than the
length of a chemical bond.1 The team has
now released its own database of pre-
dicted protein structures, including the
complete human proteome and many
nonhuman proteins whose structures,
such as the one in figure 1, experimenters
have yet to resolve.

Inspired by AlphaFold2 but with only
a rough idea of the model’s architecture,
Minkyung Baek, in David Baker’s group
at the University of Washington, and her
colleagues developed a similarly capable
model, called RoseTTAFold, in time to

publish their results concur-
rently with AlphaFold2’s this
summer.2

Both AlphaFold2 and
RoseTTAFold use deep
learning—a type of artificial
intelligence—which means
that their inner workings are
largely a black box. But their guiding
principles are some of the same ones that
have been guiding structural biologists
for years. And their success has re-
searchers thinking about how to paint an
even more complete picture of proteins
and their biological environments.

A hard problem
Compared with the rest of organic chem-
istry, understanding of proteins came
late. The first known protein structures,
of myoglobin and hemoglobin, weren’t
discovered until 1958 and 1959, respec-
tively—half a decade after the structure
of DNA. 

And unlike DNA’s elegant double
helix, protein structures were a mess.
Linus Pauling, among others, had pre-
dicted years earlier that amino-acid
chains could organize into orderly alpha
helices and beta sheets. Indeed, those
motifs do show up in protein structures,
but they’re interspersed with wild twists
and turns that hadn’t been anticipated.
“There was a sense of, ‘Holy cow, there’s

no symmetries here,’” says Ken Dill of
Stony Brook University. But the structure
wasn’t disordered either: For any given
protein, it was always the same.

The hemoglobin and myoglobin
structures had been found through x-ray
crystallography, the long-time gold stan-
dard for probing the atomic structure of
any material, not just biomolecules. (See
the article by Wayne Hendrickson,
PHYSICS TODAY, November 1995, page
42.) But the powerful technique is belea-
guered by a pair of challenges. First, it re-
quires a crystalline sample—an unnatu-
ral form of matter for most proteins.
Second, the x-ray diffraction pattern re-
tains only half the crystal’s structural in-
formation: The x rays’ intensities are eas-
ily measured, but their phases are lost.
Max Perutz, discoverer of the hemoglo-
bin structure, solved the so-called phase
problem by inserting various heavy-
metal atoms into the protein to scramble
the phases. (See Perutz’s obituary in
PHYSICS TODAY, August 2002, page 62.)
But that trick doesn’t always work.

Computer models can now
provide stunningly accurate
predictions of proteins’ three-
dimensional structures. But
what about their biological
functions?
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Deep learning opens up protein science’s 
next frontiers

FIGURE 1. FROM ALPHAFOLD’S vast collection 
of protein structure predictions comes this protein,
which may promote disease resistance in the Eurasian
wildflower Arabidopsis thaliana. The colors represent
regions of the protein predicted with high (blue)
through low (yellow and orange) confidence. The
structure has yet to be observed experimentally.
(Courtesy of the  AlphaFold Protein Structure
 Database, CC BY 4.0.)
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In recent years, cryoelectron mi-
croscopy has started to rival x-ray
crystallography in its ability to
image proteins with atomic resolu-
tion. (See PHYSICS TODAY, December
2017, page 22.) It has the benefit of
not needing a crystal—instead, the
molecules are embedded in a thin
sheet of vitreous ice—but it’s still
challenging. The folded proteins
might unravel under the effects of
surface tension, and one needs to
computationally align many 2D im-
ages at random angles to convert
them into a composite 3D structure.
Finding protein structures experi-
mentally by any method remains
difficult and laborious.

What about theoretically? Al-
though some proteins require chap-
erone molecules to fold correctly,
most can solve their own folding
problem using nothing but the laws
of physics. It’s tempting to try to re-
produce their solutions in a com-
puter simulation (see PHYSICS
TODAY, December 2013, page 13), but
the complexity of the system quickly
runs up against the limits of com-
puter power for all but the smallest
proteins. 

And the physics of folding is
subtle. The folded structure is generally
the thermodynamically favored one, but
not by much, and the details of inter-
atomic forces are extremely important.
“If you don’t know the forces, then a big-
ger computer doesn’t help you get the
right answers,” says Dill. “It just gives
the wrong answers a lot faster.”

Biological shortcuts
Any successful approach to protein-
structure prediction, including the new
deep-learning models, needs to draw on
insights from biology, not just chemistry
and physics. “Protein sequences aren’t
random. They’ve been distilled by natu-
ral selection,” says Temple University’s
Vincenzo Carnevale. Any given protein
has thousands of evolutionary cousins
from across the tree of life; that evolu-
tionary context can provide hints about
structure.

Proteins with similar sequences prob-
ably have similar structures. If the struc-
ture of a related, homologous protein is
already known, it can be used as a tem-
plate: The new sequence is fitted into the
old structure, then adjusted accordingly.

“That works in a stupendous way,” says
Carnevale, “but only because the com-
munity realized that to succeed with this
approach, we needed not just to increase
the size of the PDB but to explore the
right regions of protein-sequence space.”

From 2000 until 2015, the Protein
Structure Initiative guided the discovery
of thousands of new protein structures,
chosen not haphazardly but with the
goal of systematically exploring the pos-
sible structures proteins can adopt. By
the end of the project, says Carnevale,
“there was no longer anything novel
being discovered in protein structural
space. It had all been exhaustively
mapped out.” Although not every pro-
tein sequence has a sufficiently similar
known structure to use as a template, the
days of wholly unanticipated new pro-
tein structures were past.

Meanwhile, theorists were working
on ways to glean information about a
protein structure from its evolutionary
context even when none of its relatives’
structures are known. That surprising
feat is possible because each protein in a
family is the product of its own evolu-

tionary optimization. When one amino
acid in a protein randomly mutates, the
mutation usually isn’t enough to ruin the
entire structure, but it does destabilize it.
Evolutionary pressure therefore builds
on the amino acid’s neighbors in 3D
space to mutate also and thus restore the
structure’s stability. If, in a list of many
related protein sequences, two amino-
acid positions show a tendency to mu-
tate in tandem, they likely sit next to each
other in the folded protein. 

Structural revolution
Those methods and others were already
being tried and tested at CASP before
DeepMind entered the fray. Part compu-
tational experiment, part competition,
CASP challenges hundreds of research
groups every two years to reproduce
protein structures that have recently
been found experimentally but not yet
published. Target structures are classi-
fied by difficulty, based in part on
whether a homologous structure exists
to use as a template. Structure predic-
tions are graded on a scale from 0 to 100:
A random guess might score below 20;

FIGURE 2. ROSETTAFOLD generated this structure of the human signaling protein
 interleukin-12 (purple) bound to its receptor (blue). Although the structures of  molecular
complexes are tougher to predict than those of single proteins, the structure here agrees
well with one found experimentally through cryoelectron microscopy. (Courtesy of Ian
 Haydon, Institute for Protein Design, University of Washington.)
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an atomically precise structure, above 90.
From the early days of CASP, models

have been scoring above 80 for the easi-
est template-based predictions, while
scores for the most difficult targets have
been stuck around 40. So DeepMind’s
first CASP entry, the original AlphaFold
model in 2018, shook things up by scor-
ing above 70 for more than half of the
most difficult targets.3

The power of deep learning is that it
can recognize patterns, interpolate be-
tween known structures, and identify
mutation correlations more keenly than
human observers or more straightfor-
ward algorithms can. AlphaFold wasn’t
the first machine-learning model to be
entered into CASP; its superior perfor -
mance came, in part, from using the
structure and correlation data to predict
not just which pairs of amino acids are in
contact but the full matrix of all their
pairwise distances.

For the 2020 CASP assessment, the
DeepMind team had revamped its
model into AlphaFold2, whose predic-
tions scored near 90 even for the most
difficult targets—scores so high that they
were probably limited by the impreci-
sion of the experimental structures the
predictions were graded against.

The AlphaFold2 code and method
weren’t made public at first; all that was
released to the world was a 30-minute
presentation that described a model that
processed data on two parallel tracks.
One carried the list of protein sequences
thought to be related to the target pro-
tein; the other, a pairwise amino-acid
distance matrix. By exchanging informa-

tion between the two tracks, the model
repeatedly updated both sets of data
until it converged on a final prediction,
from which a 3D structure was extracted.

Building on the ideas in the presenta-
tion, Baek and colleagues developed
RoseTTAFold: a three-track model that
iteratively updates the sequence data,
distance matrix, and 3D structure itself.
If it had been entered into CASP in 2020,
its scores for the hardest targets would
have averaged about 80.

Now that the AlphaFold2 details are
published, Baek concedes that it’s a bet-
ter engineered method. “Almost every
component is based on some physical in-
sight,” she says. For example, AlphaFold2
requires its amino-acid distances to sat-
isfy the triangle inequality—two points
can’t be farther from each other than the
sum of their distances to a third point—
so it saves time by maintaining a degree
of physicality even at intermediate steps. 

Furthermore, while RoseTTAFold
was trained on all the PDB structures, Al-
phaFold2’s training data included addi-
tional structures predicted by the model
itself. “Training data is very critical,” says
Baek, “so I think that more complete cov-
erage of protein space helped them a lot.”

Molecular interactions
Has deep learning solved the notorious
protein-folding problem? That depends
on how the problem is defined. Dill
draws a distinction between predicting
protein structures—what AlphaFold2
and RoseTTAFold do—and understand-
ing protein folding. He considers the lat-
ter, which involves mapping the funnel-

shaped energy landscapes that guide
amino-acid chains into their folded
structures, to be largely solved already
by statistical physics.4

As far as structure prediction is con-
cerned, the deep-learning models have
reached a milestone, but they’re far from
the finish line. Proteins in nature aren’t
isolated structures. They interact with sur-
rounding molecules, including water, and
they combine with other proteins to build
large molecular machines—and, ulti-
mately, multicellular living organisms.

Deep-learning methods have made
some headway toward solving the
structures of multimolecular complexes:
The structure in figure 2, found by
RoseTTAFold, shows the signaling pro-
tein interleukin-12 (purple) bound to its
receptor (blue). Multiprotein structures
are much more challenging to predict
than single-protein ones. The models
rely heavily on structural clues from evo-
lutionary context and mutation correla-
tions. But amino acids don’t always mu-
tate in tandem if they’re in different
molecules—especially if those molecules
come from different species, such as a
pathogen and its host.

“Experimental methods are by no
means obsolete,” says DeepMind scien-
tist Kathryn Tunyasuvunakool. “They
can provide information that AlphaFold
currently can’t.” The model’s big advan-
tage, she says, is that it produces struc-
tural starting points quickly—in min-
utes, rather than months or years—and
in large numbers. “That’s useful, for exam-
ple, for generating hypotheses and plan-
ning experiments.” The deep-learning
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models are already helping experi-
menters to fill in the missing structural
data from their x-ray crystallography
and cryoelectron microscopy experi-
ments and to tackle ever more challeng-
ing structure problems.

New drugs
One of the most important uses of pro-
tein structures is in drug development.
To stop a protein from performing some
harmful action in the body, pharmaceu-
tical scientists study the protein’s struc-
ture, identify a nook or cranny that may
correspond to the protein’s active site,
and design a molecule to plug it up like
a cork in a wine bottle.

“But there’s really no such thing as
‘the’ structure,” says Carnevale, because
proteins flex and contort. Focusing on fit-
ting a molecule to one static structure ig-
nores all the other conformations a pro-
tein can adopt or the transitions between
them, any one of which might offer a
more effective way to disrupt the pro-
tein’s function.

In some cases, the dynamic approach
to drug development might be the only
viable one. In neurodegenerative condi-

tions like Alzheimer’s and Parkinson’s
diseases, amino-acid chains get tangled
up and fold into the wrong structure,
called an amyloid fibril. The fibril struc-
ture is known (see PHYSICS TODAY, June
2013, page 16), but the structure alone
doesn’t say much about how the fibril
forms—or how to stop it from forming. 

It would take a far more sophisticated
model than the ones available today to
predict a protein’s entire conformational
ensemble and range of motion. But as
Carnevale points out, “Surely the se-
quence must encode that information,
because nature knows what it is.”

Another ambitious goal that’s on
Baek and colleagues’ minds is to free
their model from the need to consider
evolutionary relationships at all and pre-
dict the folded structure based only on
the amino-acid sequence. Evolution has
produced a wondrous array of proteins
and functions, but it hasn’t come close to
exploring every possible protein. The
Baker lab’s specialty is in designing pro-
teins from scratch to do things that nat-
ural ones can’t. (See PHYSICS TODAY, June
2020, page 17.) But those bespoke pro-
teins don’t come with millions of years of

evolutionary relatives to analyze.
Says Dill, “The whole field is headed

toward bigger, better, faster”: bigger pro-
teins, more complex actions, and more
detailed information than has ever been
possible before. Lately, modelers and
experimenters alike have been working
on understanding the spike protein of
SARS-CoV-2—the virus that causes
COVID-19—whose binding to a host cell
involves a cascade of large conforma-
tional changes.5 As Dill explains, “It’s a
huge protein that’s part of an even huger
complex, the virus, with all kinds of
moving parts like a big Rube Goldberg
machine.”

Johanna Miller
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On 26 November 2018, the InSight
 lander— whose acronym stands for
Interior Exploration Using Seismic

Investigations, Geodesy and Heat
 Transport— touched down on Mars’s
Elysium Planitia. Within two months on
that flat, volcanic plain, the lander’s ro-
botic arm removed a seismometer from
the lander deck and placed it on the
ground (figure 1), where it started listen-
ing for vibrational signals. Eight orbiters
currently survey the gravitational fields,
magnetism, and atmosphere of Mars,
and six rovers have explored its surface
chemistry and geology. InSight’s seis-
mometer is the only current direct probe
of the planet’s interior. 

To date, the instrument has picked up
more than 1000 distinct seismic events.
Of the several hundred marsquakes it’s
recorded, the vast majority were  small—
 none exceeded a moment magnitude of 4.
A low level of seismic activity was not un-

expected. Unlike Earth, whose sharply de-
fined tectonic plates intersect at boundaries
that wind around the planet like the seam
of a baseball, Mars has a single, thick plate. 

The Martian activity, however, is even
lower than what some planetologists ex-
pected for the thousands of faults that
populate the surface. Most may have
formed from stresses on the planet as it
shrinks while slowly cooling. Some could
have arisen from internal  dynamics—
 mantle convection and volcanism. 

The outer part of Mars solidified from
a magma ocean produced by accretion
early in  solar- system history. An  iron-
 rich core formed as heavy, molten metal
sank into the planet’s center and lighter,
 silicate- rich material rose; part of that
lighter material melted and refroze into
a brittle crust. Orbital measurements of
the planet’s gravity, tidal response, and
moment of inertia provided early hints
of that differentiation. 

An international collaboration of 65
seismologists and planetary scientists
from 12 countries has now published
three papers that describe the first direct
observations of those distinct layers.1‒3

The teams’ quantitative measurements
of the structure set the stage for under-
standing how the planet evolved into its
current thermochemical state. 

Single seismometer
InSight isn’t the first spacecraft to bring a
seismometer to Mars. The two Viking
land ers each carried one when they
landed on Mars in 1976. But uncaging
mishaps and the seismometers’ onboard
installation prevented either from defin-
itively detecting anything but the wind. 

Working out planetary structure is
largely a matter of interpreting shear (S)
and compressional (P) seismic waves,
which travel through the planet at differ-
ent speeds and refract and reflect from
the boundaries of the planet’s layers.
Those speeds vary with stiffness (or
shear and bulk moduli, in geological
parlance), density, and temperature. The
difference in the waves’ arrival times at
the seismometer provides the distance to

NASA’s InSight is the first mission to explore seismic waves
in a planetary body since Apollo 17 in 1972. 

A seismometer maps Mars’s anatomy


