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At the time, the concept of energy bands was
firmly established, but electron conduction
mechanisms were not clear. In the view of
Felix Bloch, whose theoretical work on
atomic crystals underlies the modern under-
standing of conduction, metals and insula-
tors were just opposite limits of a continuous
electron itinerancy. Wilson instead proposed
that band filling is the control parameter: A
filled valence band allows conduction only
through electrons that are excited across an

energy gap to another band, whereas elec-
trons in partially filled bands can readily con-

duct by scattering into nearby states.
Wilson and others recognized that bandgaps

were often controlled by impurities, but how im-
purities functioned was poorly understood. (Wil-

son incorrectly speculated that silicon in its purest
state was a metal.) The 15 years following Wilson’s

proposal witnessed breakthroughs in purifying and
controlling dopants in the elemental semiconductors sil-
icon and germanium. Those advances eventually en-
abled the discovery of transistor action at Bell Labs in
1947. A surprise came, however, during the transistor
patent preparation: The basic idea underlying the  field-

 effect transistor had already been patented in 1930 by
Julius Lilienfeld, an  Austro- Hungarian physicist who
had emigrated to the US in 1921.

For semiconductors, the path from theoretical under-
standing to device implementation was neither linear
nor easily predicted. Topological materials seem to be
following a similar trajectory. We have theoretical un-
derstanding and many ideas for novel devices, but on-
going materials development suggests the tantalizing
possibility of our being at the dawn of a topological age.
Here, we describe what it means for materials to be topo-
logical and how topology raises the prospect of revolu-
tionary new devices. 

Symmetry and invariance
Characterizing phases of matter by their symmetries is a
central paradigm of physics. A magnet differs from inert
iron because its internal magnetic moments consistently
point in a particular direction rather than being isotropic.
Similarly, a solid is different from a fluid because its atoms
reside in fixed locations rather than moving freely. That
prescription for understanding states of matter is usually
referred to as the Landau paradigm.2

Over the past decade, however, awareness has grown
that there is more to matter than the Landau paradigm.

H istorians often label epochs of human history
according to their material  technologies— the
bronze age, the iron age, and, most recently, the
silicon age. From a physicist’s perspective, the
silicon age began with the theory, experiment,

and device prototyping of a new type of material: the semiconductor. Although
semiconductors had been known since the late 1800s as materials with unusual

sensitivities to light, direction of current flow, and method of synthesis, not
until the early 1930s did Alan Wilson make the radical proposal to describe their

conduction in terms of the filling of their electronic bands.1
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Researchers are uncovering an  ever- larger class of materials for
which answers to basic questions, such as whether the material
conducts electricity, depend not on local symmetries but on
nonlocal properties called topological invariants. In much the
same way that one cannot tell whether a coiled rope will form
a knot when pulled tight unless one examines the full length
of the rope, the electronic properties of a topological material
can be determined only by examining the complete set of states
in an electronic band. That nonlocality confers tremendous po-
tential on topological materials: If a property is not defined lo-
cally, then it cannot be destabilized by local defects or fluctua-
tions. The topological age thus promises a class of materials
with unusually robust properties. 

The notion of a topological invariant comes from the math-
ematical subfield of topology, which concerns those properties
of geometric objects that are conserved under continuous de-
formations. The most famous such property is the genus g, an
integer that counts the number of holes in a  three- dimensional
shape. (So g = 0 for a sphere, g = 1 for a donut, and g = 3 for a
pretzel.) The genus is defined through the  Gauss– Bonnet the-
orem, which states that the integral of Gaussian curvature K
over the surface S of an object is quantized:

Here n is an integer related to the genus by n = 2(1−g). For ex-
ample, consider a sphere with radius R. The curvature K = 1/R2

is a constant, so the integral over the surface area A = 4πR2

gives n = 2. That’s consistent with g = 0, or an object with no
holes in it. 

The remarkable implication of the  Gauss– Bonnet theorem
is that if one stretches the sphere so that some parts of the sur-
face become more curved and other parts become flatter, the
integer n remains  unchanged— it is topologically invariant (see
figure 1). Much of the recent excitement surrounding topolog-
ical electronics originates from the prospect of finding similarly
invariant physical properties of electronic systems. Such a prop-

erty would necessarily be robust to small perturbations or de-
fects because integers cannot change continuously. 

Topological electrons
In an isolated atom, electrons occupy discrete quantum energy
levels, or orbitals. But when many atoms are arranged in a crys-
tal lattice, the electron wavefunctions from neighboring atoms
hybridize with each other and the orbitals broaden into bands
of states, each having a range of energies. A state in a band de-
scribes an electron that is shared among many atoms, and the
electron’s wavefunction depends on the momentum p with
which the electron hops from one atom to another. The wave-
function can be written as the product of two pieces: a plane
wave that describes a free electron and a Bloch function up(r)
that repeats periodically for each of the crystal’s identical unit
cells.3 The Bloch function describes how the electron is affected
by atomic nuclei in the unit cell, and as we will see, it contains
information about the topology of the electron band.

The electron momentum p can have only certain restricted
values. In particular, since p describes hopping between neigh-
boring crystal lattice sites, the de Broglie wavelength λ = 2πħ/p
associated with the wavefunction cannot be shorter than the
distance between neighboring unit cells of the crystal. The mo-
mentum in any given direction thus has a maximum possible
magnitude. The space of allowable momenta is called the Bril-
louin zone, and its shape depends on the arrangement of atoms
in the crystal. 

In a discussion of an electron band’s topology, the Brillouin
zone plays the role of a geometric space. Closed surfaces in the
Brillouin zone can be likened to geometric shapes that have an
 integer- valued index akin to the genus. Importantly, the Bril-
louin zone has effective periodic boundary conditions: Exactly
opposite points on the zone’s boundary are equivalent since
they correspond to the same state with minimal de Broglie
wavelength. 

Constructing an analogue of the  Gauss– Bonnet theorem for
electron bands requires an analogue of curvature. As it turns

K dA n.=∫1
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FIGURE 1. A TOPOLOGICAL INVARIANT is a property of a geometric shape that does not change when the shape is stretched or 
distorted. One such invariant is the genus g, which is given by the number of holes in the surface and is related to the integral of the Gaussian
curvature K over the surface of the shape. Shapes with no holes in them (g = 0) all give the same value of this integral, as do shapes with one
hole in them (g = 1). (Image by Donna Padian.)
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out, that analogue arises from the proper-
ties of up(r). To see it, first consider the
question: For a given momentum p, where
is the electron wavefunction centered in
the unit cell? That question can be an-
swered by calculating the expectation
value of the position operator in the unit
cell. The result is the quantity X, which is
called the Berry connection. It can be
thought of as the  momentum- dependent
center of the electron wavefunction in real
space (see figure 2). 

One caveat to the analogy with the
 Gauss– Bonnet theorem is that X is not pre-
cisely defined because its definition is not
gauge invariant. The Bloch functions are
defined only up to an overall phase that can
depend on momentum. Thus the Berry con-
nection is like the vector potential in prob-
lems with magnetic fields in that only its
curl has a physical meaning. (We will show
below that the analogy with magnetic fields
runs deeper.)

Imagine now the hypothetical process of accelerating and
then decelerating an electron such that the electron traces a
path P in momentum space before returning to its initial mo-
mentum. The electron’s initial and final states are identical ex-
cept for a possible overall phase factor. That phase is an exam-
ple of a Berry phase (see the article by Michael Berry, PHYSICS
TODAY, December 1990, page 34) and it’s given by

The accumulation of a Berry phase is analogous to the phase
shift a particle traversing a path in position space experiences,
which is equal to the number of wavelengths in the path mul-
tiplied by 2π. Taking the same path in momentum space in the
clockwise and counterclockwise directions leads to opposite
signs for γP because it reverses the direction of momentum
change dp.

The Berry phase becomes particularly instructive if we con-
sider how it behaves for paths in a closed  two- dimensional mo-
mentum space, such as the Brillouin zone of a 2D system,
which is effectively closed because opposite edges of the zone
are equivalent. Consider the green path shown in figure 3,
which traces the boundary of a 2D Brillouin zone. Traversing
the path in the clockwise direction yields a Berry phase γBZ,
whereas the counterclockwise direction gives −γBZ. But oppo-
site edges of the zone boundary describe physically equivalent
states, so the clockwise and counterclockwise paths must pro-
duce equivalent changes to the wavefunction. That only hap-
pens if γBZ is either 0 or an integer multiple of 2π, leaving the
wavefunction unchanged. 

The condition on the Berry phase can be reformulated using
Stokes’s theorem to change the contour integral along the Bril-
louin zone boundary into a surface integral across the entire
Brillouin zone. That procedure gives

where Ω is the  out- of- plane component of the Berry curvature,
∇ × X, and C is an integer known as the Chern number.

Having a nonzero Chern number requires symmetry break-
ing. In particular, in the Brillouin zone of a system with
nonzero Chern number, the momenta p and −p are not equiv-
alent; they have different values of X. That difference requires
the system to break the symmetry with respect to either inver-
sion or time reversal. The former leaves electron states un-
changed when their spatial coordinates are inverted, and the
latter when electron trajectories are played backwards in time.
Thus, the search for topological materials has largely focused
on materials that break one of those two symmetries. As we
show below, only systems with broken time-reversal symmetry
can have a nonzero Chern number; breaking inversion symme-
try alone is insufficient. However, the coupling between elec-
tron spin and momentum may allow up and down spin species
to each have a nonzero Chern number, so long as the two  spin-
 resolved Chern numbers sum to zero.

Implications of topology
As illustrated in figure 3, a nonzero Chern number implies a
winding or  self- rotation in the structure of the electron wave-
function. That  self- rotation is associated with the electron’s
physical angular momentum. For example, imagine making a
wavepacket using states from a particular region of momen-
tum space. The electron’s position in the unit cell is related to
the momenta of the states in the wavepacket. That relationship
implies that the wavepacket’s angular momentum depends on
the local Berry curvature, making the Berry curvature again like
a magnetic field: It’s created by a broken symmetry in the mate-
rial itself, and it gives electrons an orbital angular momentum.

The analogy of Berry curvature to magnetic fields becomes
clearer when one considers the effects of an applied electric
field E, which accelerates the electron. If the electron’s center
location X has a nonzero curl as a function of momentum, then
as the electron accelerates, X shifts in the transverse direction.
That shifting is known as an anomalous velocity, and it resem-
bles the drift experienced by an electron in crossed electric and
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FIGURE 2. IN A CRYSTAL, AN ELECTRON STATE (black curve) is described by a slowly
oscillating plane wave (blue curve) whose wavelength corresponds to the electron 
momentum that is modulated by a periodic Bloch function describing the electron’s 
attraction to the atoms (red and blue circles) in the crystal’s repeating unit cell. The electron
probability density is shared among the atoms in the unit cell, as indicated by the shaded
black areas in the outlined unit cells. The Berry connection X, shown above those unit 
cells, is a vector that can be thought of as the center of the state’s density distribution.
(Image by Donna Padian.)
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magnetic fields: Applying an electric field in a particular direc-
tion causes an electron to drift in a direction transverse to both
E and the  momentum- dependent Ω, which acts like a magnetic
field.

One of the most striking implications of the magnetic field
analogy arises from the motion of electrons at a sample’s
boundary. If a conductor with no intrinsic Berry curvature is
subjected to a magnetic field, electrons near the boundary per-
form skipping  orbits— they essentially roll along the boundary
in a direction defined by the magnetic field. The skipping orbits
persist no matter how the boundary is shaped and provide a
single conducting channel for current to flow through. In a 2D
electron system with a magnetic field and sufficiently high
electron mobility, the skipping orbits give rise to the celebrated
quantum Hall effect, with a quantized electrical conductance
whose value is universal. Similarly, the  self- rotation implied by
a nonzero Chern number guarantees the existence of traveling
edge states.  Two- dimensional materials with nonzero Chern
numbers have the same universal conductance, even if no mag-
netic field is present.

The existence of a topological invariant for electron systems
subjected to a magnetic field was first identified by David
Thouless, Mahito Kohmoto, Peter Nightingale, and Marcel den
Nĳs and bears their initials (TKNN).4 Their topological invari-
ant accounts for a remarkable universality of the quantum Hall
effect among different samples and materials (see the article by
Joseph Avron, Daniel Osadchy, and Ruedi Seiler, PHYSICS TODAY,
August 2003, page 38). In fact, the TKNN invariant has allowed
the universal constant e2/ħ to be measured to more than 12 dig-
its and now forms the basis for the metrological standard of
the kilogram.5 (See the article by Wolfgang Ketterle and Alan
Jamison, PHYSICS TODAY, May 2020, page 32.) The Chern num-
ber can be thought of as a generalization of the TKNN result:
Every material has a particular integer Chern number defined
in the absence of any applied field. Most familiar materials have
C = 0; recognizing the possibility of 2D materials with nonzero
Chern number was a seminal insight of the topological age.

In quantum Hall systems, a magnetic field breaks  time-
 reversal symmetry by forcing electrons to turn in spiral trajec-
tories with a particular handedness set by the magnetic field
direction. Playing those spiral trajectories backwards in time
without reversing the sign of the external magnetic field pro-
duces motion inconsistent with the Lorentz force law. But edge
states can exist in a topological material, even one that pre-
serves  time- reversal symmetry, if it combines broken inversion
symmetry with a strong coupling between electron momen-
tum and spin. (See the article by  Xiao- Liang Qi and  Shou-
 Cheng Zhang, PHYSICS TODAY, January 2010, page 33.) In the
simplest case, those ingredients allow the two electron spin
states to have nonzero but opposite Chern numbers. 

To see how that situation can arise, consider that under time
reversal, a  left- moving  spin- up electron becomes  right- moving
and  spin- down. Thus, a topological electron band can retain
 time- reversal symmetry if the bands for  spin- up and  spin- down
electrons have opposite Chern number (figure 4). The locking
of  edge- state  directions— the two spin species moving opposite
each  other— is called the quantum spin Hall effect; it was dis-
covered experimentally in 2007 following its prediction in 2003
(see PHYSICS TODAY, January 2008, page 19).

Ultimately, the locking of spin and momentum in edge states

arises from the microscopic  spin– orbit coupling present in
atomic orbitals.  Spin– orbit coupling arises when a  fast- moving
electron experiences a magnetic field in its reference frame
from the electrostatic potential of a nucleus. In the quantum
spin Hall effect, strong  spin– orbit coupling combines with bro-
ken inversion symmetry to produce a Berry curvature and a 
finite Chern number for each spin, even though no magnetic
field is applied.

Topological bands in 3D
So far we have discussed only one example of a topological in-
variant: the Chern number in a 2D band that gives rise to edge
states much like those in the quantum Hall effect. But 3D ma-
terials can also have electrical properties that are protected by
a topological invariant. Those materials include topological in-
sulators, which are usually  narrow- bandgap semiconductors
with strong  spin– orbit coupling.6 In topological insulators, an
electrically insulating interior coexists with 2D metallic surface
states in which electron spins are locked perpendicular to their
momenta.

The 2D Chern number can also be applied to understand
3D Weyl semimetals. Such materials have special points in mo-
mentum space where their  so- called topological charge is con-
centrated. To see why, imagine defining an arbitrary closed sur-
face S of momentum states in the 3D Brillouin zone of some
material (figure 5). Applying the same arguments about the Berry
phase in 2D leads to the conclusion that the Chern number as-
sociated with the surface must be quantized. In particular,

where CS is an integer that depends on the chosen surface S
and describes a flux through the surface. 

Given that CS is an integer and cannot change continuously,
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FIGURE 3. THE BRILLOUIN ZONE (BZ) is defined by the set of all
possible momenta p for electrons in a crystal. This illustration shows
the BZ for a  two- dimensional crystal. The Berry connection X is a
vector field (black arrows) in the BZ that indicates the electron
wavefunction’s center in the crystal’s unit cell as a function of p. 
If an electron is accelerated and decelerated along some closed
path P (red loop), its wavefunction acquires an overall phase γP
whose sign depends on the direction of the path, clockwise or
counterclockwise. But if that closed path runs along the BZ 
boundary (green loop), the phase must be a multiple of 2π. 
(Image by Donna Padian.)
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slight distortions of the surface S cannot produce small changes
to the integral. The only way for CS to change is by a discon-
tinuous jump, which happens when S is expanded to include
a special point in momentum space known as a Weyl point.
Weyl points are topological analogues to electric  charges— they
are monopoles of Berry  flux— and the surface integral above
mirrors Gauss’s theorem. The points always come in pairs with
opposite topological charges. 

From a materials perspective, Weyl points arise when
strong  spin– orbit coupling causes two bands of electron states
with different angular momentum to coincide in energy. The
Weyl points correspond to the locations in momentum space
where the two bands touch (see figure 5b) and the orbital
character of the wavefunction changes abruptly. In the met -
als and semiconductors that make up most electronic tech-
nologies, such touching of bands is unusual. Typically, elec-
tronic bands cannot coincide in energy because of avoided
 crossing— the hybridization of degenerate quantum states into
symmetric and antisymmetric combinations that have different
energies. 

In 1937, before the advent of modern topological band the-
ory, Conyers Herring explained that two electron bands could
 meet— meaning they have the same  energy— because of acci-
dental degeneracies that prevent the two bands from hybridiz-
ing.7 In that case, a perturbation that removes an accidental de-
generacy can destroy the crossing and open a gap. In Weyl
semimetals, however, the Weyl points are protected by the
quantization of the Chern number. Only a sufficiently strong
perturbation that brings two oppositely charged Weyl points
together can destroy the degeneracy. Thus, Weyl semimetals
are topologically protected gapless systems. Like other topo-
logical materials, they have intriguing surface states; in partic-
ular, their surfaces exhibit Fermi arcs, which are momentum
states that connect the Weyl points.8

Identifying and classifying topological materials remains a
challenge. Materials are often grouped based on their band
structures; that grouping works well for semiconductors whose
energy gaps largely determine functionality. But topological
materials are defined not only by their energy spectra but also

by the symmetries of their electron wavefunctions. Topological
quantum chemistry aims to capture that complexity in order
to characterize materials based on both symmetry criteria and
conventional band structures.9 The computationally intensive
endeavor has unexpectedly found that an estimated 27% of all
materials are topological in nature. Searches have uncovered
not only new topological materials, but entirely new classes 
of them, such as  nodal- line semimetals10 in which two bands
touch along a line rather than a point in momentum space, and
 higher- order 3D topological insulators11 whose edge states
exist only as lines or points along the hinges or corners of 
the crystal. 

The interplay between topological electrons and acoustic or
magnetic excitations is also a burgeoning field of study. Topo-
logical concepts can even apply to phonons and magnons them-
selves, which suggests a vast terrain of new materials is waiting
to be explored.

Experimentally, the study of topological materials is pro-
gressing rapidly. New compounds and even whole classes of
topological materials are routinely being discovered. In 2008
M. Zahid Hasan and coworkers at Princeton University first
observed 3D topological insulating behavior12 using  angle-
 resolved photoemission spectroscopy (ARPES) in Bi1−xSbx.
Since then, many other topological insulators, Weyl semi -
metals, and  nodal- line semimetals have been identified. 

Technological prospects
Many materials derive their utility from their ability to either
pass a current or prevent one from flowing. For example, the
copper in a wire is useful because it allows electric current to
flow freely, whereas the polymer encasing the wire stops the
current from leaking out. Other materials pass or block heat
currents, as do heat sinks on computer processors, or filter
light, as do the  frequency- selective lenses on protective sun-
glasses. From that perspective, the silicon age arose because
semiconductors act as switchable valves for electrical current.
We now know that pure silicon is a good insulator that only
conducts if a gate voltage is applied to its surface.

New electronic materials usually have two performance 
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FIGURE 4. A QUANTUM SPIN HALL SYSTEM has equal and opposite Chern numbers, which describe electron wavefunction winding, for
its two spin species. (a) The Berry connection X, shown here for a  two- dimensional quantum spin Hall material, winds counterclockwise for up
spins and clockwise for down spins, which gives Chern numbers of +1 and −1 respectively. The system remains symmetric under time reversal,
which simultaneously changes p to −p and spin up to spin down. (b) The boundary of a quantum spin Hall material features edge states in
which one spin species moves clockwise around the sample while the other moves counterclockwise. (Image by Donna Padian.)
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targets: filtering and sensitivity. The material should be able to
selectively pass or block a generalized current in much the same
way as silicon selectively transmits electrical current. It should
also exhibit a strong response to some input, like the way sili-
con  p– n junctions turn light into electricity. Topological mate-
rials offer the promise of truly new technologies in those areas.
They are interesting filters because their Berry curvature is a
kind of handedness that breaks the symmetry between clock-
wise and counterclockwise motion. Topological materials can
therefore act like doorknobs that open when turned in the cor-
rect direction but block motion in the wrong direction. 

One striking application is in spin filtering. As illustrated in
figure 4, the edge states in topological insulators carry electrons
with opposite spins in opposite directions. Such filtering is an
essential ingredient for  so- called spintronics, which aims to
build electronic and computer technology based on currents of
spin rather than charge.13 The Berry curvature also implies that
circularly polarized light would couple differently to the two
electron species; that coupling could be used to create optical
filters or logic circuits.14 

Topological materials are unusually responsive to many
kinds of applied fields because of their gapless, topologically
protected electron bands. For example, the topological edge
states associated with a nonzero Chern number could serve as
dissipationless  current- carrying channels. They have the po-
tential to replace superconductors for some applications, and
they may even function at room temperature. 

More generally, the protection of  low- energy states in topo-
logical materials can be exploited in ways that would give them
an advantage over conventional materials in which  low- energy
states are often distorted by disorder. The protection of a ma-
terial’s electron band structure can cause its electrons to exhibit
enormous mobility, which results in each electron making an
outsized contribution to a current being carried.15 Weyl semi-
metals are extremely sensitive to light, which may lead to a

new generation of photodetectors and  night- vision goggles.16

(See PHYSICS TODAY, July 2020, page 18.) Topological semi -
metals also exhibit an unprecedented thermoelectric effect, the
ability to convert waste heat into useful electric power.17 Addi-
tionally, topological electrons are unusually sensitive to mag-
netic fields. For example, in a magnetic field the quantum levels
of the  electron— its Landau  levels— are widely spaced in en-
ergy, and applying a magnetic field along the current direction
strongly reduces the material’s electrical resistance, a phenom-
enon known as the chiral anomaly.18

Whether topological materials will revolutionize our cur-
rent electronic technologies remains to be seen. But ideas from
topology have clearly established themselves in materials
physics, and they are here to stay. They have led to predictions
and observations of new materials and phenomena. Who can
tell whether they will come to define our current era?
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FIGURE 5. BERRY CURVATURE IN A WEYL SEMIMETAL stems from monopole sources, known as Weyl points, where two electron bands
meet in momentum space. (a) The Berry curvature Ω can be depicted as a vector field (red arrows) emanating from or flowing into a Weyl
point. A closed surface (gray) that does not enclose any Weyl points has Chern number C= 0. If that surface is expanded (dashed line) to contain
a Weyl point, it abruptly attains C = ±1. (b) In a Weyl semimetal, Weyl points (red and green dots) come in pairs with opposite topological
charge and are located at different momenta (top). At each Weyl point, two electron bands (blue and orange) meet in energy (bottom).
(Image by Donna Padian.)


