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Advances in materials 

science have made it 

possible for electrons in 

metals to exhibit exotic 

hydrodynamic effects.

One might expect researchers to rely on 
hydrodynamics, with its difficult-to-solve
Navier–Stokes equation, to describe the re-
sistivity of metals. And yet that approach is
not routine. The nearly free electron model
works well because the spatial interactions be-
tween electrons in metals differ so much from
those between molecules in a gas. Whereas
molecules scatter only when they directly con-

tact each other, the mean free path, lee, at which
electrons effectively scatter is much longer—
typically microns at liquid-helium T—and it
grows longer still at lower T. 

The large mean free path leaves plenty of
time and space for impurities and thermal 
vibrations (phonons) to destroy any nascent
collective response of electrons that would
otherwise produce viscous flow. To understand

lectrons in metals and semiconductors are often naively described as little
balls bouncing around, much like atoms or molecules in dilute gases. That
description, sketched in figure 1, originally came from Lev Landau, who 
reduced the complex many-body problem to a Fermi gas of nearly free 
electrons. But his simplification is counterintuitive, because Landau theory
also infers that electron gases in normal metals should be exceedingly viscous
because of pervasive electron–electron (e–e) collisions in solids. Indeed, the
theory predicts that viscosity becomes infinite with decreasing temperature
T, and simple estimates show that as T drops to that of liquid helium, electron
gases in metals should be more viscous than honey. E
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why the destruction happens, imagine a
highly viscous classical gas moving through
a large tube, its flow experiencing dissipa-
tion, convective nonlinearities, and other 
hydrodynamic behavior. Now fill the tube
with sand, so that the intergranular gaps
are smaller than the molecules’ mean free
path. The flow through the porous sand
would then no longer be viscous. Rather, it
would be diffusive, each particle moving
independently of the others. 

Something similar happens in normal
metals: Impurities and phonons act like
those grains of sand, which are packed
densely enough to eliminate any sign of the
electrons’ collective behavior. In theory, it
should be possible to recover the intrinsic
hydrodynamic behavior of electrons, un-
masked by impurities or phonons, if a metal
is ultraclean and cooled to a low enough T
to avoid phonon scattering. (Think of that
recovery as equivalent to the removal of
sand.) But in practice, little experimental
progress has been made in reaching that hydrodynamic
regime, despite efforts over many decades. Fortunately, the
availability of new high-quality electronic materials—
graphene, in particular—has recently improved the situation. 

A history of misbehaving electrons
In 1963 Soviet theorist Radii Gurzhi asked how a viscous elec-
tron flow could reveal itself in an experiment.1 He assumed the
existence of a metallic system in which lee was the shortest
length scale that electrons would travel, much shorter than
both the sample size W and the mean free path l of electrons
whose collisions—for instance, with phonons and crystal de-
fects—did not conserve momentum. Given that assumption,
frequent collisions between electrons should be able to estab-
lish a collective flow, illustrated in figure 1b, because their total
momentum and energy is not lost to the outside world. 

Gurzhi found that the resistance R of such an imaginary
metal would have to decrease with increasing T. That’s a shock-
ing result because the standard definition of a metal is that its
R increases with T. Nonetheless, the theoretical prediction was
unambiguous and could be traced to the fact that the electron
viscosity ν in metals decreases with T. Intuitively, it also makes

sense: As a system warms, it becomes less viscous, which al-
lows easier passage of a fluid. The anomaly is usually referred
to as the Gurzhi effect, and it explains that if a metal enters the
hydrodynamic regime—where lee ≪ W and l—it should exhibit
a T dependence that is the opposite of metallic and is more like
that of semiconductors, whose R decreases with T. 

Unfortunately, finding a system that satisfies those condi-
tions turned out to be nearly impossible. One usually thinks of
large, clean crystals at cryogenic T, which would mitigate the
effect of phonons and thus increase l. Indeed, clean, three-
 dimensional metals at low T exhibit values of l that are nearly a
centimeter. However, lee also rapidly increases with decreasing
T because of what’s known as Pauli blocking. (See box 1 for de-
tails on the fundamental properties of electron systems.) 

Fermi statistics greatly limits the available phase space for
e–e collisions when T is well below the Fermi temperature TF.
As a result, lee diverges as (TF/T )2 with decreasing T. That low-
T regime is precisely where Landau quasiparticles are long
lived and the single-particle model of electrical conductivity is
justified.

The only way to reach the hydrodynamic regime is to work
at elevated T, such that the Fermi sphere becomes “softer” and
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FIGURE 1. DIFFUSIVE TRANSPORT VERSUS VISCOUS-ELECTRON FLOW. (a) In the 
single-particle, diffusive model, electrons (red circles) move as independent particles, 
undergoing collisions with impurities, phonons (yellow stars), and boundaries. (b) In the
hydrodynamic regime, in which the electron–electron mean free path is the shortest
length scale in a material, frequent interactions among electrons can give rise to collective,
viscous behavior, dubbed Poiseuille flow. The velocity in the flow direction, vx, is a parabolic
function of the transverse coordinate y. (Images from Marco Polini.)

Statistical mechanics tells us that the
ground state of a system of noninteracting
electrons is a Fermi sphere—that is, all
the states with wavenumber |k| smaller
than a maximum, dubbed the Fermi wave
number kF, are occupied, and states with
|k| > kF are empty. The occupation num-
ber nk of a state with momentum ħk is
therefore a step function, changing dis-
continuously from 1 to 0 as |k| crosses kF.
The energy of the state at kF is the Fermi

energy EF, and the related temperature
scale TF = EF /kB is the Fermi temperature.
At finite T, such a step is smeared around
|k| = kF into a smooth Fermi–Dirac distri-
bution function. 

In a series of brilliant papers in 1957,
Lev Landau showed that when electron–
electron interactions are taken into ac-
count, they do not modify that single-
particle picture much. In a Fermi liquid at
T = 0, nk displays a finite jump in ampli-
tude when |k| crosses kF. Due to electron–
electron interactions, bare electrons be-

come “dressed” electrons, known as qua-
siparticles. In a Fermi liquid, scattering
between quasiparticles is heavily con-
strained by the Pauli exclusion principle;
transitions can only occur between initial
occupied states and final empty states. At
finite T, only partially occupied states in a
window of width kBT around EF can par-
ticipate in the scattering. That “Pauli
blocking” is at the heart of the existence
of Fermi liquids and is responsible for the
1/T 2 divergence in the mean free path of
electrons in the limit of T ≪ TF. 

BOX 1. A PRIMER ON FERMI LIQUIDS
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Pauli blocking less obstructive to e–e
scattering. At those higher T, phonons
become the main hindrance and limit
l to the electron–phonon scattering
length, lep. The resulting condition,
lee ≪ lep, required to observe viscous
behavior is extremely difficult to sat-
isfy because lep often decreases faster
with increasing T than does lee. (For 
3D metals, lep usually varies as T −3,
whereas lee varies as T −2.) That scaling
narrows the materials systems one
could use and the T interval in which
electron hydrodynamics could possi-
bly be observed. 

An elegant attempt to break the im-
passe2 was undertaken in the 1990s.
Researchers applied a high electrical
current that increased the electron T of
a 2D electron semiconductor (2DES)
system and shortened lee. Even so, the
crystal lattice remained close to liquid-
helium T, which kept the electron–
phonon scattering low as well. Mea -
suring the differential resistance
revealed a small but distinct bump as
a function of applied current, a feature the researchers inter-
preted as plausible evidence for the Gurzhi effect. 

Gurzhi and coworkers immediately disagreed with that in-
terpretation,3 and they pointed out that peculiarities of e–e
scattering in 2D materials demand an even more stringent con-
dition than that in 3D metals—namely, lee ≪ W(T/TF), which
had not been achieved in the experiment. Their rejection left
the research status in limbo: For a half century after the Gurzhi
theory was postulated, no electronic system had been found to
exhibit unambiguous signs of hydrodynamic behavior.

Graphene to the rescue
Despite having a Nobel Prize behind it, graphene did not ini-
tially look like a promising candidate for studies of electron hy-
drodynamics. It was filled with impurities, with a mean free
path barely exceeding 100 nm (see the article by Andre Geim
and Allan MacDonald, PHYSICS TODAY, August 2007, page 35,
and PHYSICS TODAY, December 2010, page 14). But that changed
around 2011, when researchers found that encapsulating

graphene in hexagonal boron nitride dramatically improved its
electronic quality. The encapsulation shielded graphene from
outside impurities and flattened the crystal by suppressing
scattering at microscopic corrugations. 

Today, graphene is one of the highest quality electronic ma-
terials ever produced: Its low-T mean free path is currently lim-
ited only by the device size W, at least up to 10 μm, and exceeds
a micron even at room T. More importantly, graphene is ex-
tremely stiff, a feature that suppresses phonon scattering and
increases lep. And unlike what happens in 3D metals, electron–
phonon scattering in 2D graphene increases slowly with T;
lep ∝ T −1, with a small proportionality coefficient that accounts
for stiffness. As noted earlier, e–e scattering rises much faster,
with lee ∝ T −2. 

Therefore, above a certain T, lee is expected to become the
shortest scattering length in graphene. Moreover, graphene’s
TF is typically greater than 1000 K. That’s neither too small, as
it would be in semiconductor 2DESs, where the Fermi surface
is largely destroyed at room T, nor too high for the required
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FIGURE 2. NEGATIVE RESISTANCE AND CURRENT WHIRLPOOLS. (a) In a so-called vicinity-
resistance measurement, current I is injected into a two-dimensional device of width W through
a narrow lead, and a potential drop ΔV is measured between a voltage probe placed a short 
distance L from the injector and a faraway lead. (b) In this micrograph of a real device, graphene
(white) is tipped with electrical contacts (magenta), and current and voltage probes can sample
any of several positions during an experiment. (c) This color map shows the calculated distribution
of electrical potential in the absence of viscosity. The voltage and resistance are positive (red) and
arrows reveal the steady-state current pattern. (d) In the case of viscous flow, lobes of negative
voltage (blue), and thus negative resistance, emerge near the current injector I. The finite viscosity
induces whirlpools in the current flow. (Adapted from ref. 4.)

The motion of water in oceans, turbulent
air currents, and Marangoni flows, which
produce “tears of wine” inside a glass, are
a few examples of phenomena governed
by the Navier–Stokes equation. The equa-
tion is essentially Newton’s second law for
each fluid element—a small volume of a
liquid or gas subjected to external forces.
Today, no mathematical theory exists that
would unlock the equation’s complete
solution. Finding it remains one of the fa-

mous seven Millennium Prize problems. 
To describe a steady-state flow of

electrons, the simplest, linearized form of
the Navier–Stokes equation is normally
used:4–6

in which J(r) = nv(r) is the current density,
n is the electron density, ϕ(r) is the elec-
tric potential, σ0 is the diffusive conduc-
tivity, and e is the electron charge. The

length over which the flow’s momentum
diffuses is given by Dν = √—ντ, where τ is a
time scale that describes momentum dis-
sipation from the scattering of electrons
with impurities and phonons. In the limit
where Dν goes to 0, the linearized Navier–
Stokes equation yields Ohm’s law locally:
−eJ(r) = σ0E(r), where E(r) = −∇ϕ(r) is the
electric field. To find an electron flow pat-
tern, the Navier–Stokes equation needs
to be solved together with the continuity
equation, ∇ ∙ J(r) = 0, and the boundary
conditions. 

∇ r ∇ J r J rϕ( ) + ( ) − ( ) = 0,D2 2
ν

σ0

e

BOX 2. THE NAVIER–STOKES EQUATION IN CONDENSED MATTER 
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2D condition lee ≪ W(T/TF) to be consequential. In short, it is
hardly possible to imagine a better material than graphene for
studying viscous electron flows.

Despite the promise of that expectation, in 2015 when the
first contemporary experiments began probing the phenome-
non, graphene’s resistance showed no sign of the Gurzhi effect
at any T. In hindsight, one can understand why the viscous ef-
fects did not show up straightforwardly. The kinematic viscos-
ity ν enters the Navier–Stokes equation as a coefficient in front
of the second spatial derivative of velocity v(x,y) (see box 2). In
the standard resistance measurements that use a long strip of
a uniform width, only vx(y)—the y dependence of flow velocity
in the x direction—is nonzero. Unless significant momentum
losses occur at the strip boundaries, the y dependence tends to
be weak. The result is a fairly uniform flow profile. And with-
out a significant velocity gradient, the viscosity term contributes
little to the solution of the Navier–Stokes equation and, hence,
to the resistance R. 

That insight offered a tip for how to proceed: To maximize
the hydrodynamics effects in experiment, it is essential to cre-
ate a current flow as inhomogeneous as possible.4

Negative resistance and whirlpools of electrical current
One geometry that provides large velocity gradients is a nar-
row current injector, shown schematically in figure 2. Accord-
ing to the Navier–Stokes equation, the electric potential changes
its sign at a characteristic distance of order of Dν = √‾‾‾leel/2 from
the injector.4–6 One can measure that local potential in the so-
called vicinity geometry—that is, by placing a voltage probe
sufficiently close to the injector. The corresponding resistance
RV—the local voltage divided by the injected current—has the
normal, positive sign for noninteracting electrons in both diffu-
sive and ballistic transport regimes. Negative RV, by contrast,
is a smoking gun for viscous flow.4

However, one must be careful. As T increases, the initial
sign change indicates that ballistic transport is strongly af-
fected by e–e interactions, and the hydrodynamic regime 
develops only later, at higher T when collisions among elec-
trons become more frequent.7 The observation of negative RV

in graphene and its comparison with behavior expected by
Navier–Stokes theory allowed the first measurements of an
electron fluid’s viscosity. At liquid-nitrogen T, ν turns out to be
100 times as great as honey. Reassuringly, that result agrees
with many-body theory.4

Navier–Stokes theory also predicts another spectacular ef-

fect in the conductivity of metals because of viscosity.4–6 The
negative region of electric potential near the injector is predicted
to develop into a whirlpool of electrical current. Whirlpools are
familiar phenomena in the laminar flow of ordinary fluids, but
in the vicinity geometry4,6 of figure 2a, they are theoretically
expected to exist near a narrow injector. Only the size of Dν de-
pends on the actual value of ν.

For other geometries that create a nonuniform flow,5 current
whirlpools generally disappear if Dν gets smaller than the char-
acteristic device size W, even though the negative potential
anomaly doesn’t change.  

Electrons go superballistic
In 1908 Martin Knudsen observed that the speed of gas flowing
through a small aperture suddenly increased when he increased

W w
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FIGURE 3. ELECTRON FLOW THROUGH A CONSTRICTION.
A narrow aperture of width w ≪ W separates two wide leads. 
(a) In ballistic transport—Knudsen flow in the language of gas 
dynamics—electrons move independently. With no scattering 
between them, the resistance to their flow (blue) through the 
constriction had been expected to be a minimum. (b) In a viscous
electron fluid, however, Poiseuille flow corresponds to yet lower 
resistance. An individual electron (red), initially directed toward 
the boundary, isn’t expected to contribute to the conductance. 
But collisions with other electrons effectively drag it toward the 
constriction and the collective motion decreases the resistance. 
The quantity Dν is the length scale over which momentum 
diffuses as a result of electron–electron collisions. (Images from
Marco Polini.) 

Formulated in 1864, Matthiessen’s rule
states that if several independent scat-
tering processes exist in a system, the
total resistance R is the sum of the resis -
tances due to each process. Deviations
from the rule occur in metals but are
generally tiny. The occurrence of an
anti-Matthiessen’s rule, in which con-
ductivities G rather than resistivities 
are added, is exceptionally rare. One
possible scenario was proposed for 

the case of strange metals.14–16

A viscous electron flow through a
point contact (PC) is another exception.
Two relevant time scales exist in that 
situation. The first is the single-particle
flight time across the constriction,
τ1 = 2/π (w/vF), where w is the size of a
constricting aperture and vF is the Fermi
velocity. The second is the time scale over
which the momentum diffuses over the
same distance, τ2 = π/32(w2/ν), where ν is

the viscosity. The total PC resistance9 is
given by

where m is the effective electron mass, G1

is the Sharvin conductance, G2 is the con-
tribution to conductance from electron–
electron interactions, and n is the electron
concentration. Three years ago, experi-
ments confirmed the validity of that anti-
Matthiessen equation.8

R
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=               = ,
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G G
1 2
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τ τ
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BOX 3. ANTI-MATTHIESSEN’S RULE
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the gas’s density. The experiment implies that a higher viscosity
boosts the gas flow, which is a counterintuitive result. The ef-
fect is well understood today as the transition from Knudsen
flow to Poiseuille flow, or in the language of metal physics,
from ballistic-electron transport to viscous-electron transport.
The phenomenon observed by Knudsen can be viewed as the
analogue of the Gurzhi effect for gases rather than electrons. 

An experiment similar to Knudsen’s was recently performed
on graphene.8 As shown in figures 3 and 4, a narrow aperture
of width w connects two wider regions, a geometry known as
point contact (PC). In the ballistic regime at low T, such PCs
were first made and studied by Yuri Sharvin in the 1960s. He
found that even in the ideal case—without any disorder and
scattering—a PC exhibited finite electrical conductance. Its value
is given by the number of electron-wave modes that can fit in-
side the aperture. 

Until recently, researchers have tacitly accepted that Sharvin’s
conductance was the highest possible value. The absence of
disorder seemed to imply the best-case scenario for unimpeded
electron transport. But that turned out to be wrong. Figure 4b
shows that when T is increased and a system enters the hydro-
dynamic regime, the resistance measured in a graphene PC
drops below the ideal ballistic limit. For the experiment in the
figure, the drop was caused by the transition from ballistic to
viscous electron transport. It was also accompanied by a semi-
conductor-like T dependence—the first unambiguous manifes-
tation of the Gurzhi effect. 

How is it possible for viscosity to lower the electrical con-
ductivity? After all, basic physics tells us that greater electron
scattering should increase the resistance—a trend known as
Matthiessen’s rule. Making the transition from the low-T regime,
where Sharvin’s description applies, to the higher-T hydro -
dynamic regime, electron viscosity sets up a funnel-like current
pattern through the aperture, akin to what happened in Knud-
sen’s experiment. 

Imagine an electron moving toward the PC, as in figure 3.
In the ballistic regime, it hits the wall and stops contributing to
the conductance. But in the hydrodynamic regime, the same
electron is dragged by electron collisions toward the opening
and forced to funnel through it. That funneling is what raises
the conductance above Sharvin’s ballistic limit. Mathematically,
the superballistic flow happens because conductivities are
added—the so-called anti-Matthiessen’s rule9 described in 
box 3. By comparing experimental results and theory, the two of
us and our colleagues were able to accurately measure graphene’s
viscosity as a function of electron concentration and T.

Electronic magnetohydrodynamics
Another knob that can be turned to explore viscous flow is the
magnetic field B. In traditional metallic systems, B causes the
Hall effect, a potential drop perpendicular to the direction of
both current flow and the magnetic field. How is the Hall effect
influenced by electron viscosity? The presence of a magnetic
field breaks down time-reversal symmetry and produces a new
kinematic coefficient νH in the Navier–Stokes equation. The co-
efficient, known as the Hall viscosity, is odd under reversal of
B and is dissipationless. The Hall viscosity gives rise to an extra
term in the Navier–Stokes equation that is proportional to νH,
acts against the Lorentz force, and suppresses the resulting po-
tential drop. 

The suppression of the Hall effect is local and extends only
over distances of Dν, typically about 0.5–0.6 μm. By placing volt-
age probes close to a narrow current injector, we measured a local
Hall effect.10 For graphene in the hydrodynamic regime, it was
found to be notably smaller than the standard Hall effect, mea -
sured simultaneously at some distance from the current contact.

What’s next 
Now that we know how to force hydrodynamics to show up
in experiments, we expect to soon observe viscous phenomena
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FIGURE 4. THE GURZHI EFFECT. (a) A graphene device has a series of point contacts of different widths w; the contacts link several boxes
(turquoise), each connected to separate electrodes (yellow). (b) The resistance of one of those point contacts (w= 0.5 μm) is plotted as a function
of temperature T for three electron densities n. The horizontal lines indicate the ideal, ballistic limit. But as T increases, the resistance drops
below the expected minimum and follows a nonmonotonic dependence on T—the Gurzhi effect. (c) Black dots represent viscosity8 measured
as a function of T for n = 1012 cm−2. The experimental dots closely agree with many-body theory calculations (red line). For comparison, note
the y-axis scale: The viscosity of honey is about 10−3 m2/s. (Adapted from ref. 8.)



in many systems, including 2DESs in semiconductors, graphite,
bismuth, topological insulators, and Weyl metals. Evidence al-
ready exists for viscous flow in delafossites,11 and local (vicinity
and PC) geometries should help make those observations. Ma-
terials in which electrons and holes coexist and interact strongly
present another interesting challenge.12,13

Let’s also not forget about materials that defy the Fermi-liquid
paradigm. They are called strange metals14,15 and have Planck-
ian transport scattering times on the order of ħ/(kBT) down to
the lowest T. Those metals are also expected to exhibit viscous
electron motion, albeit with a tiny viscosity conjectured to be
close to a universal lower bound predicted by string-theory
methods. Experimental evidence of the lower bound has been
reported in ultrahot nuclear matter, such as quark–gluon plas-
mas, and in ultracold atomic Fermi gases, but not in condensed-
matter physics.

Yet another enticing project would be to extend existing hy-
drodynamic studies into the regime where nonlinear terms in
the Navier–Stokes equation can no longer be ignored. In clas-
sical fluids, those terms are responsible for nonlinear phe-
nomena such as turbulence. Similar physics is expected to
occur in electron fluids, but studying such fluids would require
materials with smaller ν and longer τ compared with the 2DESs
studied so far.

For all those new ventures, one should use not only electri-
cal probes but also the visualization tools that are now avail-
able. Scanning probe microscopes that can sense voltages or
magnetic fields are one example. They can image local distri-
butions of electrical current at submicron scales and reveal elec-

tron hydrodynamics at an entirely new, more spectacular level.
Watch out for beautiful images of electron whirlpools and vis-
cous flows coming soon.
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