

■ Bartington

+44 (0)1993 706565

www.bartington.com

READERS' FORUM

only hope that they will not be faced with a terrible happening such as a nuclear war.

Robert Grayson Cumming, Georgia

[Editors' note: Alas, Babylon is out of print but still available through used-book sellers and as an ebook. It was mentioned briefly in a review of The Trinity Paradox (PHYSICS TODAY, May 1992, page 64).]

Charles Kittel's perseverance

read with great sadness the obituary of Charles Kittel (PHYSICS TODAY, October 2019, page 73). I have something to add—namely, his incredible courage in the face of a major speech impediment. His example of not bowing to his disability but soldiering on was an inspiration to anyone lucky enough to hear him speak. I look back at my incredible fortune in having spent time with Professor Kittel, and my guess is that thousands of physicists around the world would say the same thing.

Bernard J. Feldman (feldmanb@umsl.edu) University of Missouri–St. Louis

Richter supported Stanford accelerator projects

he excellent obituary for Burton Richter by Roy Schwitters (PHYSICS TODAY, August 2019, page 64) does not cover the support, starting in the late 1960s, that Burt gave the Stanford Synchrotron Radiation Project (SSRP) to use synchrotron radiation from the colliding beam storage ring of SPEAR, SLAC's first electron-positron collider. Nor does it mention his support, starting in the early 1990s, for the Linac Coherent Light Source to use the SLAC linac to drive an x-ray free-electron laser. His advocacy for those projects has enabled SLAC to transform from a high-energy physics lab into a photon science lab. Without his contributions, it is doubtful that SLAC would be in existence today.

Perhaps the first and most critical decision Burt made was to install, as part of the original construction of SPEAR in 1972, a special vacuum chamber with a tangential spout that allowed a small swath of synchrotron radiation, from less than one degree of curved path in a modified bending magnet, to exit the ring.

The chamber made it possible to start synchrotron radiation experiments without having to modify a SPEAR magnet and vacuum chamber. It is hard to imagine that those modifications would have been made after the exciting collidingbeam results that were obtained at the start of SPEAR's operation, because they would have required that the ring be shut down and vented. The decision to design, construct, and install the chamber could not have been easy for Burt; SPEAR was significantly underfunded, and financing to cover the additional cost of the modifications to the vacuum system would have been hard to find.

Herman Winick (winick@slac.stanford.edu) SLAC Stanford University Menlo Park, California

Corrections

December 2019, page 15—In the statement "He calculated that the radiation would have cooled from an initial temperature greater than 1010 K," the figure should have been 10¹⁰ K.

January 2020, page 50—Quartz was mistakenly listed as a carbonate mineral.

■ The property of the property

CONTACT PHYSICS TODAY

Letters and commentary are encouraged and should be sent by email to ptletters@aip.org (using your surname as the Subject line), or by standard mail to Letters, PHYSICS TODAY, American Center for Physics, One Physics

Ellipse, College Park, MD 20740-3842. Please include your name, work affiliation, mailing address, email address, and daytime phone number on your letter and attachments. You can also contact us online at https://contact.physicstoday.org. We reserve the right to edit submissions.