
Capturing the behavior of

complex materials requires

connecting dynamics on

multiple scales.  
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Complex fluids can exhibit counterintuitive behavior.
For example, inserting a rotating rod into a polymer solu-
tion or melt will cause the fluid to climb many centimeters
up it. Known as the Weissenberg effect, the behavior is op-
posite that seen in fluids like water, whose flows are dom-
inated by inertia. In simple fluids, a depression in the liq-
uid’s surface forms around the rod. Equally strange, if a
bit of polymer liquid is pulled out of the top of a bucket,
it can act as a kind of tubeless siphon and continue to flow
over the edge on its own accord, as shown in the opening
image. (For videos of the effects described here, see refer-
ence 1.)

Solid polymers display many equally interesting phe-
nomena. Because their dynamics slow dramatically as
they approach their glass transition temperature—the
temperature below which a polymer behaves like a solid
but remains noncrystalline—many polymers never reach
equilibrium on cooling. In practice, polymers are not al-
ways uniform enough to fully crystallize. Solid, fully crys-
talline polymers are therefore scarce. If solidification oc-
curs by rapid cooling either during or immediately after
the material is deformed, the sample will stay deformed

as long as it remains below the glass transition tempera-
ture, but it will go back to its original shape when heated.
Applying a large plastic deformation to a solid polymer
causes chain segments to become strongly oriented and
can produce filaments with ultrahigh stiffness and
strength. Those fibers are then used for many applications,
such as cut-resistant gloves and strong, lightweight ropes
for use at sea. For a more detailed description of semicrys-
talline polymers, see box 1.

Cross-linked networks of hydrophilic polymers in
water form hydrogels that exhibit elastic behavior. Despite
being mostly water, double-network hydrogels can sustain
very high stresses—up to tens of megapascals—without
breaking. Evidence suggests that the gel dissipates energy
by irreversibly breaking the covalent bonds of one net-
work while maintaining its strength through the second,
unbroken network.

Simple beginnings for complex behavior
Continuum mechanics provides a well-established foun-
dation for describing the macroscopic behaviors of both
fluids and solids. Applying momentum conservation to a
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Engineered materials exhibit amazing and useful out-of-equilibrium properties.
Some are soft but tough; others can harvest waste heat to produce electricity.
Their properties often depend on how the materials are processed; during pro-
cessing they can exhibit complex flow behavior unlike that of simple fluids.
Classical descriptions like the Navier–Stokes equation or Hookean elasticity

do not capture the mechanics of such materials. Instead, modeling emergent complex
behavior requires simultaneous dynamical descriptions on both macroscopic and
 microscopic length scales (see the figure on page 38). Such multiscale modeling relies
on physical insight; the examples discussed here, which use minimal mathematics,
show that the growing field is ripe for contributions from physicists, mathematicians,
materials scientists, and engineers.
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continuum generates the equation of motion known as
the Cauchy momentum equation:2

The left side contains the mass density ρ, the macroscopic
fluid velocity v, and the material time derivative. The
right side captures the forces on a point in the continuum
through the total pressure tensor Π and body-force vec-
tor g. Simply put, the equation is force equals mass times accel-
eration. 

Adding a restrictive assumption—that the pressure tensor
has the usual isotropic thermodynamic pressure plus a contri-
bution that is linearly proportional to the instantaneous velocity
gradient—yields the famous Navier–Stokes equation. The as-
sumption implies that deformations on molecular length scales
relax so quickly that the microscopic components of the material
always behave as if they are locally at equilibrium.3 It also guar-
antees nonnegative entropy production. The idea is intuitively
appealing, and for fluids like water, whose small molecules relax
rapidly compared with macroscopic strain rates, the Navier–
Stokes equation indeed appears to be exact.

However, for polymers, proteins, colloids, liquid crystals,
emulsions, and other materials with larger constituent parts, mi-
croscopic relaxation rates can become comparable to macro-
scopic strain rates, which causes the local equilibrium assump-
tion to fail. (See the article by Byron Bird and Charles Curtiss,
PHYSICS TODAY, January 1984, page 36.) Researchers recognized
the shortcomings of the Navier–Stokes equation for such materi-
als early on; they then began searching for a fix, and the field of
rheology was born. Although Cauchy’s equation was safe, it con-
tained that unknown pressure tensor term Π, which could no
longer simply be replaced by a pressure term plus a term pro-
portional to the velocity gradient. The modeling of complex flu-
ids still starts with the velocity field, but adjustments are needed
to account for noninstantaneous microscopic relaxation by bring-
ing elastic effects into the otherwise purely viscous description.

Like fluid mechanics, solid mechanics also begins with the
conservation of linear momentum. However, the resulting
equation is usually recast in terms of the Lagrangian deforma-
tion field χ, which for elastic solids is more natural than a ve-
locity field. The simplifying assumption for describing solid-
like behavior is that the pressure tensor is linearly proportional
to instantaneous strain, a component that is closely related to
the spatial derivative of χ. Not surprisingly, the assumption in-
troduces several limitations that make it inappropriate for
complex materials. Even with moderate deformations, stresses
can depend nonlinearly on strains. And as anyone who has
tried to repair a bent wire coat hanger knows, solid deforma-
tions can be irreversible. Linear elasticity, on the other hand,
has no entropy generation, so it should always be reversible.
Therefore, an accurate description of complex solids needs to
be extended to account for relaxation effects.

The simplified fluid description has dissipation with no
elasticity; the simplified solid has elasticity but no dissipation.
The former implies an infinitely fast relaxation of the material’s
microscopic components, whereas the latter implies no relax-

ρ—v = −∇ · Π + ρg .D
Dt
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FIGURE. POLYMERIC MATERIALS exhibit different structures on 
a wide range of length scales. If a material is deformed, the
 structures relax on disparate characteristic time scales, from tens of
picoseconds for monomers to hours or even years for bulk materials.
Models of multiscale materials aim to describe bulk properties by
capturing structural dynamics across length and time scales.
(Adapted from Y. Li et al., Polymers 5, 751, 2013.)

BOX 1. SEMICRYSTALLINE POLYMERS
Cooling a polymer below its crystallization temperature typically does not
result in a fully crystalline material. Instead, crystallization is arrested by
topological constraints and a dramatic slowing as the system approaches
its glass transition temperature.12,13 Processing conditions, such as how the
polymer is cooled and deformed, have a strong effect on the resulting mi-
crostructure and determine properties like the volume fraction of crystals,
the thickness of lamellae, and the structure’s overall anisotropy.

The diagram outlines how flow-induced crystallization in a polymer
can control the material’s mechanical properties. When isotropic polymers
(top) undergo a macroscopic deformation, they can become oriented and
stretched (right). At sufficiently low temperatures, that stretching enhances
their crystallization (bottom). Chain segments locally pack into small organized
structures, such as lamellae or shish kebabs, that can assemble into superstructures. 

The semicrystalline morphology of those superstructures (left) can affect the macroscopic behavior of the crystallizing material,
including its effective linear elastic properties, yield stress, birefringence, and conductivity. When producing ultrahigh-strength
polymer fibers, crystallinity is relevant only during the intermediate processing steps. Achieving the desired mechanical properties
requires finding the right density of chain entanglements. A lower entanglement density, which can be achieved by dilution, not
only helps to produce thin fibers but also increases the fiber’s drawability, which gives the filament its ultrahigh strength. (Image
courtesy of Markus Hütter.)



ation at all. Irrespective of whether one takes a fluid or a solid
as the starting point, extension, or rather enrichment, is clearly
required to account for the finite-time relaxation found in real
materials.

Microstructure
To describe complex solids and liquids, researchers first had to
develop the idea of microstructure, which is captured by vari-
ables on an intermediate length scale that relax slowly and
have a clear connection to a system’s dynamics on the atomistic
scale. The number of such variables should be many orders of
magnitude smaller than the number of atoms in the system but
still capture the physical phenomena of interest. Any discarded
degrees of freedom are typically assumed to be near equilib-
rium and provide a sort of thermal bath for the more slowly
relaxing degrees of freedom. 

Physical insight from experiments or atomistic simulations
can guide the development of evolution equations for mi-
crostructural variables. That process, known as coarse grain-
ing,4 raises three questions:
• What are useful microstructural variables?
• What equations describe their evolution?
• How are macroscopic quantities, such as stress, related to
the microstructural variables?
Answering each question requires insight, intuition, and inno-
vation. Systematic ways of finding the right microstructural
variables rarely exist. But whether the starting point is a fluid
or a solid, the goal of incorporating microstructural variables

is to bring finite-time relaxation processes into the overall de-
scription. Boxes 1, 2, and 3 give examples of continuum ap-
proaches that have been enriched by including microstructure.

A concrete set of variables that accurately describes the mi-
crostructure in a complex material is paramount. The variables
must include sufficient detail about the microstructure, and
simplifications must discard only unnecessary information.
The model is then more likely to retain the necessary physics
to capture many phenomena. For example, a set of microstruc-
tural variables might simultaneously describe mechanical and
dielectric phenomena, birefringence, and direct structural in-
formation obtained by scattering experiments. However, the
variables should only retain the necessary physics for the prob-
lem of interest. An overly detailed model can become cumber-
some and have too many adjustable parameters.

If a wide separation exists between the macroscopic and mi-
crostructural length scales, it should be reflected in the variable
choice. Typically, a separation of time scales accompanies the
separation of length scales, which makes possible the use of
fluctuation–dissipation theorems.5

Without a more prescriptive set of instructions, choosing the
variables for each physical system falls largely to physical in-
sight. But that is not a shortcoming. It is an essential step toward
physics-based, rather than algorithm-based, coarse graining.

Introducing microstructural variables into a dynamic
model should decrease, not increase, the model’s complexity.
It should allow observed phenomena to be expressed in phys-
ically intuitive terms and relate seemingly distinct aspects,
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BOX 2. CRYSTALLINE METALS
Solid metals are typically imperfect crystals. When they experi-
ence sufficiently high stress, new dislocations—line defects in
the crystal structure—are created in large numbers. The dislo-
cations cause irreversible plastic deformation by moving
through the crystal lattice,14,15 a feature that is absent in the solid
mechanics of elasticity. Interactions between dislocations in-
crease the stress required for yielding and result in work hard-
ening. Dislocations can be described in various levels of detail:
parametrization of each dislocation, a statistical description of
the orientation of dislocation segments, or simply a density of
dislocation segments.

The diagram shows different microstructural levels of de-
scription for a crystalline metal. A full-detail atomistic lattice
with line defects is shown in the lower left. In the lower right is
a phase-field description of dislocations that does not explicitly
account for the lattice. The upper right shows a large number of
dislocations, each of which is represented by a discrete line.

Macroscopic samples are typically not single crystalline.
Rather, they are polycrystalline and contain grains—smaller sin-
gle-crystalline volumes that make up the larger structure seen
in the upper left. The presence of grain boundaries hinders the
stress-activated motion of dislocations, so the grain size has a
strong effect on the plastic deformation behavior of metals;
smaller grains make the metal stronger.

Quantifying the rich microstructure and capturing the inter-
play between the microstructure and the macroscopic behavior

depend on exactly which phenomena one wants to study.
Macroscopic stress leads to the creation and motion of disloca-
tions, which also couple back to the macroscopic scale. The
characteristics of the dislocations, such as their Burgers vectors,
density, and velocities, inform the so-called plastic strain-rate
tensor on the macroscopic level, which is the key ingredient for
enriching elasticity theory with plasticity. (Image courtesy of
Markus Hütter.)
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such as how the concept of entangled polymer chains helps
elucidate the counterintuitive Weissenberg and tubeless-
siphon effects.

Thermodynamics, but with friction
Modeling the nonequilibrium thermodynamics of dynamic,
multiscale systems relies on thermodynamic potentials, such
as the Helmholtz free energy. The potentials for such systems,
which can be derived from statistical mechanics, do not just de-
termine static properties, but also provide the driving forces
for the fluxes and relaxation processes of the microstructural
variables. Statistical mechanics can also be applied outside
equilibrium, not just to macroscopic variables like volume but
also to microstructural variables. That strategy was first used
by Werner Kuhn in 1934 to describe polymers.6 However, be-
cause the microscopic and macroscopic descriptions have dif-
ferent amounts of entropy, it is important that the free energies
on both levels be compatible: Performing two successive
coarse-graining steps, from atomistic to mesoscopic and then
to macroscopic, must yield the same free energy as that ob-
tained in a single step from atomistic to macroscopic.

Thermodynamic potentials also help to determine with
minimal phenomenology the elusive pressure tensor Π. Al-
though they may seem like restrictions, thermodynamic con-
straints are actually quite liberating. As long as new models
and microscopic variables conform to those constraints, they
will avoid the risk of creating energy ex nihilo, destroying en-
tropy in the universe, or masking other forbidden features.4

Once the microstructural variables are chosen, they need as-
sociated evolution equations, which must conform to funda-
mental physical constraints like the first and second laws of
thermodynamics and the fluctuation–dissipation theorem. Pa-
rameter values for those equations, such as friction coefficients,
may have to be obtained from molecular dynamics simulations
or another highly detailed description. In practice, that might
mean that the system’s dynamics are described on three levels:
atomistic, microstructural, and continuum. However, once the
necessary parameter values are found, the atomistic simula-
tions can be discarded, and the model is left with only two re-
maining variable sets: microscopic—or more accurately, meso-
scopic—and macroscopic. In simulations, the two sets must
communicate with one another at all times.

No monologues, but a dialogue
Multiscale modeling links the dynamics of the structure on the
mesoscopic level with a macroscopic dynamic formulation. The
time evolution of macroscopic variables like those typically
used in fluid and solid mechanics is refined by time-dependent
information from the microstructure. The coupling should be
bidirectional: A macroscopic deformation distorts the mi-
crostructure, and, in turn, the forces of the deformed mi-
crostructure give rise to out-of-equilibrium stresses on the
macroscale. The pressure tensor is thus not expressed directly
in terms of a macroscopic velocity or displacement gradient;
rather, it depends on the mesoscale’s structural state. Such a sce-
nario is typical, and nonequilibrium thermodynamics is often

BOX 3. MORE POLYMER MODELS
Polymers come in multiple shapes and
sizes, and different models are needed to
describe their dynamics. One example is a
simple model for an idealized branched,
entangled chain architecture called the
pom-pom.16 Each chain has a linear back-
bone with q branches of identical molec-
ular weight on each end. The microstruc-
ture is characterized by two parameters: a
conformation tensor c that describes the
average orientation of the backbone and
a stretch ratio Λ that characterizes the average stretch of the back-
bone relative to the average equilibrium length that results from
flow. The arms slow down the backbone’s relaxation, but other-
wise, their direct contributions to observables are neglected.

The pom-pom model complies with thermodynamics, and
researchers have identified an expression for its free energy that
captures both the driving force of the dynamics and the de-
pendence of the pressure tensor on microstructural conforma-
tions. The appropriate orientational relaxation is determined by

where τb is a frictional relaxation time constant for the back-
bone. The stretch dynamics are coupled with the conformation
tensor and the velocity gradient, which stretches the backbone
according to

where τs is a stretch relaxation time and is assumed to be much
smaller than τb. The function f equals 1 + Λ if Λ ≤ q, or Λ − 1/q
otherwise. That jump captures a sudden relaxation in the poly-
mer’s dynamics, which is attributed to its branches withdrawing
into the tube already occupied by its backbone when doing so
becomes entropically favorable.

Solving the pom-pom model requires calculating the veloc-
ity field v and the two microstructural variables, c and Λ, simul-
taneously at every point in the flow domain. All three parame-
ters are coupled. The continuum level feeds the velocity
gradient to the microstructure, which relays the pressure tensor
to the continuum. The model can describe qualitative differences

— + v · ∇c = (∇v)† · c + c · (∇v) − — (c − —δ) ,∂c
∂t

1
τb

1
3

— + v · ∇Λ = Λc : (∇v)  − ——— [min(Λ,q) − —] ,∂Λ
∂t

1
Λ

Λ
τs f(Λ)

Atomistic simulations
of entangled polymer chains

Primitive path analysis 
to find model parameters
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employed to achieve bidirectional coupling in a way that is
compatible with fundamental principles of thermodynamics.4

Although derivatives of thermodynamic potentials act as
driving forces for dynamics, frictional transport coefficients are
also needed to describe relaxation phenomena. Like entropy,
friction increases when moving to coarser levels of descrip-
tion. The most famous assertion of that fact is the fluctuation–
 dissipation theorem, which relates the magnitude of certain
fluctuations on one level of description, like forces or velocities,
to friction on a coarser level. Originally, the theorem was de-
rived from purely deterministic dynamics without any friction
to put restrictions on coarse-grained dynamics.

Models are more useful when they are well-defined mathe-
matical objects and not just computer algorithms. A mathemat-
ical object can be tested rigorously for adherence to the princi-
ples of thermodynamics. And when an asymptotic solution to
a model exists, it can also be used to test the convergence of al-
gorithms. In our own work, we used the mathematical formu-
lation of the slip-link model to derive an algorithm for graphical
processors. It exploits the parallel computing power of inexpen-
sive video cards to perform simulations that are two orders of
magnitude faster than those on central processing units but that
yield identical results. The speedup could not have been
achieved without a well-defined mathematical object.

Using a nonequilibrium thermodynamics route for the
model formulation guarantees that the first and second laws,
among other restrictions, are respected. The numerical algo-
rithm must therefore converge to a thermodynamically accept-

able solution. Moreover, forcing the discretized dynamics of
the algorithm to obey thermodynamics can improve the nu-
merical stability of the simulations.7

Everything flows, including microstructure
The quintessential system for applying multiscale modeling is
polymers. The simplest microstructural variable for a poly-
meric liquid, and one that is slowest to relax, is the conforma-
tion tensor c ≡ 〈ReeRee〉, where Ree is the end-to-end vector of
one polymer chain and 〈 … 〉 is an ensemble average. If the
chains become stretched out by a flow field, their entropy de-
creases, but their energetics are not changed significantly,
which produces a strong thermodynamic drive for the poly-
mers to return to their shorter, isotropic conformations. That
retraction naturally gives rise to shear and normal stresses,
which easily occur in polymers. In fact, the Weissenberg effect,
in which polymeric fluid climbs up a rotating rod, is due to the
presence of anisotropic normal stresses, which provide tension
along curved streamlines in the flow. So-called hoop stresses
form, squeeze the fluid, and cause it to move up the rod.

Observations of atomistic simulations or the scattering prop-
erties of real systems can be incorporated into a conformation
tensor. Hence that microstructural variable easily connects sim-
ple molecular descriptions to macroscopic phenomena.

But things aren’t always that straightforward: Chain un-
crossability in concentrated polymers leads to entanglements.8
The spacing between entanglements is a length scale that is
independent of molecular weight and is intermediate to the

that have been observed in shear and elongation experiments for
branched-chain-polymer architectures but not observed in linear
chains. There also exist several modifications to the model that
were suggested either by thermodynamic considerations or by
improved agreement with experiment.

Similarly, the microscopic dynamics of an ensemble of inde-
pendent stochastic trajectories can be solved numerically, akin to
using Brownian dynamics simulations to extract information from
Fokker–Planck equations. A method called smoothed particle hy-
drodynamics can be used for the macroscopic-level calculations. Em-
bedded in each particle is an ensemble of several thousand coarse-
grained polymer chains. The chains are stochastically independent,
but all feel the same local velocity gradient. Taking the proper av-
erage over the ensemble of chains yields the local polymeric con-
tribution to stress and the self-consistent motion of the particles.

The slip-link model, illustrated here in tandem with
smoothed particle hydrodynamics, is used to describe linear en-
tangled chains. It has fewer adjustable parameters and greater
fidelity with experiments than the pom-pom model. On the
left, an atomistic simulation shows dense polymer chains at
equilibrium. Topological analysis can uncover entanglements
in each chain, as shown in the next image. Entanglement pa-
rameters are found by matching the statistics from all the
chains with the coarse-grained slip-link model (center). An en-
semble of chains is placed in each particle of the smoothed
particle hydrodynamics simulation, shown in the next image,
to find the macroscopic flow. Those simulations can then pre-
dict the stresses or other macroscopic properties anywhere in-
side the flow (right). (Image adapted from Mol. Syst. Des. Eng. 1,
6, 2016.)

Discrete slip-link model
with parameters from
atomistic simulations

Stress prediction in complex flow
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polymer’s persistence length and the overall size of the poly-
mer coil. In several articles in the 1970s Masao Doi and Sam
Edwards proposed describing the microstructure of a polymer
in terms of the probability density for the orientation of a tube
segment that surrounds a particular length of polymer. With
that level of description and a simple proposal for anisotropic
dynamics, their tube model accurately described the stress re-
laxation in nonlinear step-strain experiments. (For more on
polymer entanglement, see the article by Tom McLeish,
PHYSICS TODAY, August 2008, page 40.)

The single-segment theory of Doi and Edwards is not suffi-
cient to make quantitative predictions or describe more de-
tailed phenomena. That shortcoming led to the development
of more detailed models, such as the so-called slip-link
models,9 which have successfully described entangled poly-
mer melts. Their microstructural variables include fluctuations
in entanglement number, entanglement spacing, and monomer
density between entanglements. The entanglement parameters
characterizing the relevant statistics can all be found with
atomistic simulations. Because of their finer level of descrip-
tion, the slip-link models discussed in box 3 capture the broad
spectrum of phenomena displayed by polymer melts.

No time to relax yet
Plenty of opportunities exist to build new multiscale models.
For example, the dynamics that underlie dislocation-based
plasticity may not exhibit a clear separation of time scales,10

which implies that the fluctuation–dissipation theorem might
not hold. Systems without time-scale separation clearly war-
rant further investigation.

Brittle fracture is also governed by communication be-
tween large and small length scales, which makes it a good
candidate for multiscale modeling. However, unlike the ex-
amples above, in which the microstructure exists throughout
the continuum and its effects can be averaged, fracture con-
tains an isolated crack tip in an otherwise elastic continuum.
The stress field around the crack tip is long ranged and
drives the fracture, but the crack tip itself exists on a small
scale. Continuum mechanics are therefore typically applied
far away from the crack tip, but atomistic and even quantum
mechanical descriptions are used nearby. Intricate coupling
is needed to connect the two regions. Because it incorporates
the effects of disparities in both length and time scales, mul-
tiscale modeling offers opportunities for advancing models
of brittle fracture.

Although this article focuses on the responses of materials
to deformation, similar issues arise when materials are exposed
to other stimuli, such as temperature gradients and electro-
magnetic fields. In those cases, the details of a dynamic multi-
scale model—the particular choice of variables and the model’s
formulation—depend on which stimuli and phenomena are
being studied. But the general philosophy of multiscale mod-
eling presented here can still be applied. Multicomponent ma-
terials and the coarse graining of active matter, such as molec-
ular motors in a gel or swarms of swimming Janus particles,
also present unique challenges that might benefit from multi-
scale modeling. 

Researchers should not think of microstructural variables
only as necessary mathematical simplifications. When coarse
graining is successful, it yields deep insights into the physics

that underlies interesting phenomena and helps scientists de-
velop intuition for molecular engineering. Atomistic simula-
tions are most useful when they are accompanied by a guiding
coarse-grained level of description that can facilitate the extrac-
tion of useful information. Even when coarse graining fails, it
uncovers information about the assumptions that went into it.
A coarse-grained model that eliminates some essential physics
will fail to agree with experiment, and that in itself is useful to
know. So instead of making apologies for coarse graining, we
say that one has no excuse for not doing it.11

Many open questions, both fundamental and practical, re-
main, and each new problem requires deep physical insight and
creative intuition to find the appropriate level of description.
Despite their impressive accomplishments, machine-learning
algorithms are not likely to uncover the proper way to model
entanglements. Physicists have a lot to contribute in the field.

Great progress has been made in developing robust numer-
ical algorithms for multiscale modeling, but it seems that every
new model presents unforeseen numerical challenges. Both
fundamental and applied mathematicians can make important
contributions on that front, and the tools they develop for mod-
eling multiscale systems are not only intriguing from a funda-
mental perspective. They have tremendous potential for appli-
cations in engineering and may eventually lead to the
designing of molecules that exhibit desired nonequilibrium
properties.

Markus Hütter would like to acknowledge stimulating discussions
with Marc Geers, Varvara Kouznetsova, and Theo Tervoort. Jay
Schieber would like to thank David Venerus for useful feedback on the
manuscript.
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