SEARCH & DISCOVERY

Random walkers illuminate a math problem

A family of tricky integrals can now be solved without

explicit calculation.

n a 1905 issue of Nature, statistician
IKarl Pearson of University College

London asked readers for their help
with a problem he named the random
walk': A walker starts at an origin point
and walks [ yards in a straight line in a
random direction. The walker then turns
and proceeds another [ yards in another
random direction, and the process re-
peats n times. Having found the solution
only for the case of two steps, Pearson
wanted an expression for the probability
that the walker is a radius r from the
starting point after n steps.

In the intervening 114 years, the ran-
dom walk—or, more colorfully, the
drunkard’s walk—has been applied to
such diverse fields as ecology, econom-
ics, computer science, biology, chemistry,
and physics, and it helped produce the
art on the cover of this issue. Physicists
use the random walk to model diffusion,
Brownian motion, polymers, and even
quantum field theory. Random walkers
can move in one, two, or more dimen-
sions, and their steps can have a fixed
length or a probabilistic distribution of
possible lengths. Figure 1 is an example
of a simulated two-dimensional random
walk with a fixed step length.

Random walks can now add solving
integrals to their resume because of the
work of Satya Majumdar and Emmanuel
Trizac of Université Paris—Sud/CNRS.?
The project started one Sunday in May
2018 when a Twitter post captured their
attention. The tweet, from Fermat’s Li-
brary (@fermatslibrary), presented a math-
ematical oddity: A family of successively
larger integrals follows an apparent pat-
tern that breaks down unexpectedly with-
out an intuitive mathematical explana-
tion. But when the integrals are framed as
random walks, all becomes clear.

Integral to our understanding

The integrals I, in question are shown in
figure 2. They are one variant of Borwein
integrals, which integrate over products
of sin(a,x)/a,x factors; the a, coefficients
take a different value for each factor and
for each variant. The integral I, with only
the n =1 factor is . The integral I, with
two factors, I, with three factors, and
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FIGURE 1. THE PATH OF A TWO-DIMENSIONAL RANDOM WALK is generated when a
simulated walker probabilistically takes horizontal or vertical steps of a fixed length.

even up to I, with seven factors are also
all . But the integral I; with eight factors
is short of 7 by less than 107'°. That odd
behavior was first reported in 2001 by
David Borwein of the University of West-
ern Ontario and his son Jonathan Bor-
wein of Simon Fraser University.®> Nu-
merical calculations uncovered the
deviation, which, because it was both
small and unexpected, was first attrib-
uted to a software bug. But it wasn't a
bug; it was a behavior found in all vari-
ants of the sin(a,x)/a,x integrals, now
named after the two researchers, and in
many related integrals with additional
functions in the integrand.

The Borweins found an expression
for the first integral that deviates from
the pattern in all Borwein integrals. If the
first coefficient a, is larger than the sum

a,+...+a; of all the rest of the coeffi-
cients, the integral gives the expected
value. In I,, for example, the coefficients
are 1, %4, and ’%; 1 > % + %, and the integral
is 11, as expected. Once the sum exceeds
the first coefficient, the value of the inte-
gral changes. For the integrals in figure
2, that transition first happens for I,
which is less than 7. But mathematicians
have lacked an intuitive understanding
of why the change happens.

Inspired by the tweet, Majumdar and
Trizac hoped a physics perspective
might offer some insight to the problem,
and they began searching for a relevant
reformulation. The pattern breaking re-
minded the pair of a phase change, but
the resemblance proved fruitless. It was
then that the structure of the integral re-
minded them of a Fourier transform.
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integral in figure 2 can be
reimagined as the Fourier
transform of sin(k)/k evaluated
at x =0, or the density of ran-
dom walkers at the origin. For
those walkers at x =0, the ini-
tial distribution looks the same
as the case with walkers
spread to infinity.

NORMALIZED DENSITY

FIGURE 2. BORWEIN INTEGRALS integrate
over products of factors of the form
sin(a,x)/a,x. One variant, with a,=1/(2n - 1),
is shown here. The first seven integrals, /, to
1,, all equal 7. Beginning at /5, all of the sub-
sequent integrals are slightly, and increas-
ingly, less than .

With that insight, the connection to ran-
dom walkers became obvious.

Walk the line

Majumdar and Trizac restricted their
imagined random walkers to a 1D walk
with the ability to share the same posi-
tion. They started with an infinite num-
ber of random walkers spread out evenly
along an infinitely long line. When all the
walkers take random steps, the number
of walkers that leave a position—call it
position x =0—is the same as the num-
ber of walkers that land on that same po-
sition. No matter how many steps the
random walkers take, the total number at
x =0 stays the same.

But what if the random walkers oc-
cupy a finite space? If they start from
x =0 and take an initial step with a size
equally distributed in the range | Ax| <1,
the walkers will be evenly spread from
-1 to 1 (see the left panel of figure 3), and
the Fourier transform of that rectangular
distribution is sin(k)/k in terms of the
conjugate variable k. The first Borwein

1 step

2 steps

The second integral calcu-
lates the fraction of walkers at x =0 after
they each take a second step with
[Ax| <4 Another step with [Ax| <%
produces the situation in the third inte-
gral, and so on. With each step, the ran-
dom walkers spread out more (see the
middle and right panels of figure 3) and
look less like the infinite case, but it takes
eight steps for the number of walkers at
the origin—and thus the Borwein inte-
gral—to change. That’s because the den-
sity at x = 0 stays the same as the infinite
case until the information that initially
there were no walkers beyond +1 reaches
the origin. A random walker starting at
x=-1 and acting as a messenger travels
at most %5+ % + ... + 1/(2j-1) after j steps.
The walker gets to the origin only after
the eighth (/) step. That argument,
based on the rate at which information
propagates, is equivalent to the Bor-
weins’ expression, but Majumdar and
Trizac show why it’s correct.

Their intuitive picture does more
than reveal when the results of the inte-
grals change; it also offers a way to
avoid directly calculating those compli-
cated integrals. One simply finds the
normalized density of random walkers
atx = 0. The density after the first step—
and the next six steps—is %4, which needs
to be multiplied by a factor of 27 to get
the value of the first seven integrals.

3 steps
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FIGURE 3. THE DISTRIBUTION OF RANDOM WALKERS evolves as they take steps
dictated by the integrals in figure 2. After their first step, the walkers are evenly distributed
between —1 and 1 (left panel). After a step of length from - to J;, some walkers spread
out beyond +1 on the number line (middle panel). After another step of up to /%, the
walkers spread out even more (right panel). In all three, the normalized distribution at x=0

remains %. (Adapted from ref. 2.)

That calculation-free route to the solu-
tion will be important for other inte-
grals that haven’t been or can’t easily be
numerically solved.

All in the family

The method from Majumdar and Trizac
applies to all variants of Borwein and
many similar integrals. One such family
of integrals takes the form of those in fig-
ure 2, with the addition of a cos(k) factor
in the integrand. With a similar Fourier
transform reimagining, the integrals still
represent the density of random walkers,
but now at x = 1. The random walkers at
at that position know that there are no
walkers beyond x =1. But they are un-
aware that there are no walkers below —1.
Thus they behave the same as if the walk-
ers stretched infinitely far, until the infor-
mation from x=-1 reaches them—that
is, when the steps add up to 2. That hap-
pens at the 57th step, which is when the
value of the integral decreases by 10™°.

The same logic can be applied for
families of integrals in which the walkers
start evenly distributed in a finite range
or all the walkers start at two points +b,
as defined by a coefficient b in a cosine or
Bessel function. The walkers can take
steps with a range of sizes, as defined by
the coefficients a, in sin(a,x)/a,x factors,
or any other distribution of steps as long
as they are bounded. And if no longer
confined to 1D, random walkers can be
applied to integrals in any number of di-
mensions. “We have put forward a tool
that hopefully will prove useful for com-
puting even more complex quantities,”
says Trizac.

In addition to their purely mathemat-
ical interest, sin(ax)/ax functions and in-
tegrals of those functions appear fre-
quently, perhaps unsurprisingly, in
Fourier analysis—for example, the
sin(ax)/ax function is used to smooth
Fourier series. Fields such as acoustics
and optics rely heavily on Fourier analy-
sis for signal processing. But the connec-
tion with random walkers may open up
new avenues for applications.

Heather M. Hill
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