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W
hen a system is brought to a critical phase transition, such as the gas–liquid critical
point where the density difference between liquid and gas disappears, or the Curie
point of a ferromagnet where the spontaneous magnetization disappears, many of
its properties exhibit singular behavior. Beginning with Johannes van der Waals’s
work in the 19th century,1 analyses of critical phenomena have largely focused on static

properties, such as free energies, equilibrium expectation values and linear responses to time-
independent perturbations. In classical statistical mechanics, static properties are determined
by the equal-time correlation functions. However, critical singularities also occur in dynamic
properties, such as multi-time correlation functions, responses to time-dependent perturbations,
and transport coefficients. Those properties cannot be derived from the equilibrium distribution.
A different approach is needed.

New mathematical approaches have extended physicists’ understanding

of magnets, superfluids, and other complex systems.

Theory of dynamic critical 
phenomena

The dendritic topography of the shores 
of Lake Nasser in Egypt is the result of
scale-free critical processes. This 2005
photo was taken from the International
Space Station. (Courtesy of NASA.)
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In the 1960s and early 1970s, major advances occurred in the
theory of critical phenomena. Important ideas that emerged in-
cluded the introduction of critical exponents to describe how
various static quantities diverge or go to zero as one approaches
a critical point and the introduction of scaling laws, which lead
to relations among the various exponents.2 Renormalization-
group methods gave a means for understanding scaling laws
and gave methods for calculating critical exponents, at least
approximately.3 For that achievement, Kenneth Wilson was
awarded the 1982 Nobel Prize in Physics. Importantly, those
ideas led to an understanding that the static critical behavior
of various systems could be divided into what were termed
universality classes. The classes are sensitive to such features
as the symmetry of the order parameter or the spatial dimen-
sion of the system, but they are independent of other micro-
scopic details of the Hamiltonian, within a broad range.

As progress was made in the theory of static critical phe-
nomena, physicists realized that ideas of scaling and univer-
sality classes, as well as renormalization group methods, could
also be applied to dynamic properties.4–6 The review article
“Theory of dynamic critical phenomena,” published in 1977 in
Reviews of Modern Physics, provided a summary of the status of
those theories7 and promoted a classification scheme that re-
mains in use today.

Two systems belonging to the same static universality class
may belong to different classes of dynamic phenomena. That
important distinction is true even away from a critical point.
For example, both the classical Heisenberg ferromagnet and
the antiferromagnet on a simple cubic lattice have essentially
identical thermodynamic properties: One can map the antifer-
romagnet onto the ferromagnet simply by changing the signs
of the spin vectors on one of the sublattices. However, the 
antiferromagnet has a dynamic property, a spectrum of spin
waves, whose frequency is linear in the wavevector at long
wavelengths, whereas the ferromagnet’s spectrum is quadratic.

In general, the low-frequency dynamic properties of a sys-
tem not at a critical point can be characterized by a hydro -
dynamic theory. Such a theory describes fluctuations of the
conserved quantities and any additional slow variables that
may occur when the equilibrium state has a spontaneously bro-
ken symmetry. The form of the theory depends sensitively on
symmetry and on the Poisson brackets, or quantum mechanical
commutation relations, among the slow variables. The univer-
sality classes for dynamic properties near a critical point de-
pend on those features and on the parameters that affect the
static critical properties, such as the spatial dimension. 

An important quantity characterizing any dynamic univer-
sality class is the dynamic critical exponent z. It is defined so

that at the critical point, the characteristic frequency for fluctu-
ations of the order parameter at wavevector k is proportional
to kz, for small k. In some cases, the dynamic exponent z can be
directly related to the static exponents.

For example, for the Heisenberg ferromagnet in three di-
mensions, theory5 predicts z = (5 – η)/2, where η is a static crit-
ical exponent whose value is about 0.035. For the antiferromag-
net, one has simply z = 3⁄2. By contrast, in the model of an
Ising-like ferromagnet that interacts with an external heat bath,
one finds that z = 2 + x, where x cannot be related to static ex-
ponents. It can be shown that x ≥ 0, but its value for three di-
mensions (d = 3) is unknown. What is known is that a renor-
malization group calculation6,8 near the case of four dimensions
finds a small nonzero x, given to lowest order in an expansion
in 4 − d by x = 0.0134(4 − d)2.

Experimentally, the most accurate studies of critical behav-
ior have been made at the superfluid–normal transition of liq-
uid helium-4. Scaling theory4,9 predicts that the thermal conduc-
tivity λ should diverge here as λ ~ (ξCp)1/2, where ξ ~ 1/(δT)0.67

is the correlation length of the order parameter at a tempera-
ture difference δT above the critical point, and Cp is the specific
heat at constant pressure, which has a sharp cusp maximum at
the transition point. Experiments agree well with the predic-
tion over four decades of δT. 

In recent years, interest has shifted to critical behavior at, or
near, a zero-temperature phase transition, where quantum ef-
fects play a decisive role.10 There, static and dynamic quantities
are intimately mixed, and many new phenomena are encoun-
tered. Nevertheless, ideas such as dynamic scaling, universality
classes, and the dynamic exponent z continue to figure promi-
nently in the quantum regime.
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