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In materials physics, applied gauge
fields in the form of laboratory magnetic
fields are essential for realizing exotic quan-
tum phenomena, such as the quantum Hall
effect (see the article by Joseph Avron,
Daniel Osadchy, and Ruedi Seiler, PHYSICS
TODAY, August 2003, page 38). In a two-
 dimensional lattice, for instance, electrons
that move through a periodic potential
and a strong magnetic field are expected
to exhibit a recursive, fractal energy spec-
trum known as Hofstadter’s butterfly, pic-
tured here. 

Furthermore, strongly correlated sys-
tems can host new gauge fields or parti-
cles known as anyons, which obey unusual

quantum statistics—not those of everyday
fermions or bosons. This article explains
how to create artificial gauge fields—made
on demand in a controlled laboratory set-
ting—by using ultracold atomic gases. The
engineered gauge fields can lead to phe-
nomena that naturally occur in other sys-
tems and to new phenomena that occur
nowhere else in nature.

To understand the concept of a gauge
field, one must confront a difficult and
perplexing aspect of physics, in which the
equations describing physical reality in-
volve variables that are not measurable.
Such equations occur even in elemen-
tary classical electrodynamics, where the
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Gauge fields are ubiquitous in nature. In the 
context of quantum electrodynamics, you may be
most familiar with the photon, which represents
the gauge field mediating electromagnetic forces.
But there are also gluons, which mediate strong

forces, and the W and Z particles, which mediate the weak forces. 
According to the standard model, those few gauge bosons, in fact,
mediate all elementary interactions. 

Suitable combinations of laser

beams can make neutral atoms

behave like electrons in a 

magnetic field. 
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magnetic vector potential A, satisfying B = ∇×A, is used in place
of the magnetic field B to describe the familiar Lorentz force
that curves charged particles around magnetic field lines. A static
vector potential is not measurable by itself—only its curl, the ac-
tual magnetic field, is. Hence A is defined only up to an arbitrary
curl-free function—allowing the so-called gauge choice—that
keeps the observable electromagnetic forces intact. That reality
cannot depend on an arbitrary function is an example of gauge
invariance, a fundamental physical principle that requires all
physical observables to be independent of the choice of a gauge. 

The concept of gauge field is merely auxiliary in classical
physics. Maxwell’s equations and Newton’s force law can option-
ally be reframed in the Hamiltonian or Lagrangian formalisms
that replace physical fields with gauge potentials. Although the
gauge potentials provide a convenient mathematical framework
for solving some problems, a complete understanding of clas-
sical physics does not require the reframing. 

In contrast, the gauge-field formulation is the only consis-
tent mathematical description of quantum particles interacting
with electromagnetic fields. Indeed, the central object in quan-
tum mechanics, the wavefunction ψ(r)—often represented as a
position-dependent complex function having both real and
imaginary components—is not directly observable. The wave-
function’s overall complex phase factor eiϕ can be changed with
no physical consequence. For charged particles, that ambiguity
in the definition of a wavefunction is tied one-to-one to the am-
biguity in the choice of a gauge for the electromagnetic field.

Gauge ambiguity is not a mathematical curiosity. It’s an in-
trinsic property of quantum mechanics and a source of many
important and peculiar quantum effects, such as the Aharonov–
Bohm effect (see the article by Herman Batelaan and Akira
Tonomura, PHYSICS TODAY, September 2009, page 38) and topo-
logical phases of matter, the focus of the 2016 Nobel Prize in
Physics (see PHYSICS TODAY, December 2016, page 14). 

Ultracold atoms
Although gauge fields and their associated forces abound in
physics, their properties cannot be fully controlled. For exam-
ple, the charge of an electron is a fundamental constant, and

the Lorentz force is a law of nature; both are nonnegotiable.
And yet gauge-field physics can be simulated in tabletop ex-
periments by using ultracold atoms.

A cloud of ultracold atoms, held at temperatures typically
between hundreds of picokelvins to tens of microkelvins, is
up to a million times thinner than air. The atoms live in ultra-
high vacuum, isolated from their environment and trapped by
optical or magnetic forces. Each aspect of their physical de-
scription must be assembled from quantum mechanical build-
ing blocks. 

The energy of the atoms’ interactions with each other is fee-
ble, typically on the order of 10−31 joules. Yet the gases can still
form strongly interacting quantum systems. For example, neu-
tral atoms trapped in an optical lattice—the standing waves
formed by mutually interfering laser beams—tunnel from one
site to another, just as electrons do in a crystalline solid, and
repel each other whenever they share the same lattice site. 

The energy balance between the atoms’ tunneling and their
interactions can be adjusted by changing the intensity of the in-
terfering lasers. The change can drive the transition between
an itinerant phase, in which atoms hop freely between lattice
sites, and a crystalline phase, in which they are immobile,
pinned to their sites. The change in intensity also provides a
way to realize the Hubbard model in strongly correlated elec-
tronic materials (see the article by Gabriel Kotliar and Dieter
Vollhardt, PHYSICS TODAY, March 2004, page 53). The Hubbard
model and other standard theoretical models rarely occur in
their pristine form in materials. To give such iconic and ideal-
ized models life in the laboratory, one can use cold atoms to
forge a link between quantitative, precise atomic-physics ex-
periments and many-body theory.

The response of a material to electromagnetic fields is per-
haps the most versatile and informative way to probe its elec-
tronic phases. As simulators, though, cold atoms lack a crucial
ingredient that makes such probing possible: electric charge.
Because of their charge neutrality, individual atoms do not ex-
perience Lorentz forces in a magnetic field. It would therefore
seem that a wide range of phenomena would be forever out of
reach of cold-atom experiments. Fortunately, that’s not so. 

FIGURE 1. THE APPEARANCE OF QUANTIZED VORTICES in a rotating superfluid is a smoking gun for the presence of an artificial magnetic
field. The density of vortices is in direct proportion to the artificial field’s magnitude. (a) Quantized vortex arrays in superfluids were first 
imaged in liquid helium in 1979 at the University of California, Berkeley.1 (b)They were later seen, in 2000, in a slowly rotating Bose–Einstein
condensate (BEC) of rubidium.2 (c) This 2003 image of a quickly rotating BEC of Rb captures a large array of vortices created at JILA.4
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Rotation as simulation
The first artificial magnetic field experiments using cold atoms
exploited the equivalence between the Lorentz force in a uni-
form magnetic field and the Coriolis force in a spatially rotating
frame. The equivalence may be most familiar in the context of
the Foucault pendulum, whose axis of oscillation slowly ro-
tates at an angular velocity ω. The reason for the rotation is sim-
ple: A particle traveling linearly with velocity v in a stationary
frame undergoes curved motion in a rotating frame from the
Coriolis force FC ∝ v × ω, just as a charged particle follows a cir-
cular cyclotron orbit in a uniform magnetic field from the
Lorentz force FL ∝ v × B.

One of the most beautiful and direct manifestations of su-
perconductivity is the formation of vortices—sharply localized
quanta of circulation of magnetic flux or angular momentum.
Quantized vortices were predicted for superfluid helium by Lars
Onsager in 1947 and by Richard Feynman in 1955. Russian the-
orist Alexei Abrikosov extended the prediction to superconduc-
tors in 1957 and showed that interactions between the vortices
ordered them into a regular array, the so-called Abrikosov lat-

tice. The achievement earned him a Nobel Prize in Physics al-
most 50 years later (see PHYSICS TODAY, December 2003, page 21). 

Vortices can be induced in a superfluid by the effective mag-
netic field present in rotating systems. In 1979 Richard Packard
and colleagues first imaged a vortex array, as shown in figure 1,
in helium by using a rotating cryostat.1 Two decades later, Jean
Dalibard and colleagues found much the same thing—a small
cluster of three uniformly spaced vortices—in atomic Bose–
Einstein condensates (BECs) of rubidium-87 stirred by a focused
laser beam.2 The observation provided strong evidence for su-
perfluidity in BECs.  

The groups of Wolfgang Ketterle at MIT and Eric Cornell at
JILA made technical improvements that led to observations of
large vortex arrays—a qualitative leap beyond the earlier results
found in liquid He and the atomic BECs.3,4 Those large Abrikosov
lattices set the stage for studying the dynamics of vortex crys-
tals during melting and in other nonequilibrium settings. 

As exciting as the experiments on rotating superfluids have
been, though, they only probed phenomena observable in
weak gauge fields. An important figure of merit in many-body

FIGURE 2. STIMULATED RAMAN TRANSITIONS. Two counterpropagating laser beams (pink and blue) incident on a Bose–Einstein 
condensate (BEC) can create artificial magnetic fields. (a) The beams drive stimulated Raman transitions in the atoms; each transition absorbs
a photon from one beam and emits one into the other beam while imparting a momentum kick to the atom. As an atom is moving upward,
say, it also moves right from the recoil. The reverse happens for atoms moving downward. The kicks simulate a transverse, velocity-dependent
Lorentz force. (b) An atomic BEC with an artificial gauge field turned off (left) and turned on (right). The appearance of quantized vortices
mark the presence of the artificial gauge field. (Adapted from ref. 5.) 
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FIGURE 3. PHASE ENGINEERING. Quantum mechanical particles experience magnetic fields by acquiring Aharonov–Bohm (AB) phases.
(a) In an AB interferometer, a magnetic field B is confined to the interior of a solenoid and is zero outside it. Nevertheless, a particle that 
travels on opposite sides of the solenoid will acquire a phase difference proportional to the enclosed magnetic flux Φ. That flux equals the
line integral of the vector potential A around the solenoid. The charge is specified by q. (b) Particles that tunnel in a lattice experience an
applied magnetic field in much the same way as in the AB effect. Their tunneling motion from one site to another acquires a so-called Peierls
phase, such that the sum of the phases around a closed loop equals the enclosed flux. 
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systems is the ratio of the radius of the
minimum cyclotron orbit to the average
interparticle separation. The smaller the
ratio, the stronger the magnetic field 
effects and the closer one gets to prob-
ing the difficult and exciting physics of
strongly correlated topological phases of
matter. Those phases include the frac-
tional quantum Hall states, collective
states of matter that occur in ultrastrong
fields and in which electrons behave as if
their elementary charge is a fraction of
their actual charge. (See the article by 
Jainendra Jain, PHYSICS TODAY, April 2000,
page 39.) Unfortunately, the range of ro-
tation-induced artificial magnetic fields
are far from that interesting territory.
New approaches were required to reach
larger artificial fields.

Laser-induced gauge fields 
The first new approach in the laboratory
used an atomic BEC illuminated by a pair of counterprop -
agating laser beams, each having a distinct wavelength λ
(figure 2a). Most atoms, including those in a BEC, have several
spin states that are distinguished by a combination of orbital,
electron, and nuclear spin degrees of freedom. When the laser
beams strike the BEC, they become quantum mechanically
coupled to the spin states of individual atoms. During each 
interaction, an atom’s spin flips, a process accompanied by 
the exchange of a photon from one beam to the other. The ex-
change imparts to the atom a momentum kick of 2h/λ, which
changes the atomic velocity by about 1 cm/s. The BEC atoms
are so cold that even that tiny change exceeds the thermal ve-
locity of the system.  

The recoil of the atoms depends on their vertical motion and
slight differences in the beam wavelengths. As an atom moves
upward, for instance, it is stimulated to emit a photon into the
leftward-moving beam (blue) in figure 2 and, as a result, acquires
a kick to the right. The change in momentum emulates the
transverse response of a Lorentz force, which moves the atom
in circles, to use the classical analogy. An artificial magnetic
field is created. 

Although that intuitive picture alludes to forces, the quan-
tum system is mathematically better described by the appear-
ance of an electromagnetic vector potential—a gauge field.5–7 In
2009, a team including one of us (Spielman) demonstrated the
technique at NIST.5 The artificial magnetic field was marked by
the presence of vortices, as shown in figure 2b, but in the lab-
oratory frame rather than in a rotating frame.

In the final analysis, the experimental scheme in figure 2
turned out to be well suited for creating elongated trapped-
atom geometries but not for creating extended systems with
large fields. Even so, the pioneering work opened the door for
experiments that now do operate at large fields.

The Aharonov–Bohm effect 
In quantum mechanical systems, gauge fields are inseparably
intertwined with the wavefunction’s phase. The connection is
dramatically evident in the Aharonov–Bohm (AB) effect,

shown in figure 3a, for charged quantum particles moving
about an infinite solenoid. The magnetic field is zero outside
the rings of the solenoid, where the particles actually move.
But even though they never experience a magnetic field, the
particles still respond to the electromagnetic vector potential,
which, unlike the magnetic field, necessarily extends outside
the solenoid.

Upon completing a closed loop, each particle’s wavefunc-
tion acquires an additional phase—the AB phase—which is
proportional to the magnetic flux enclosed by the solenoid. By
Stokes’s theorem, that flux is equal to the line integral of the
vector potential around the loop traversed by the particle.
Hence the acquired phase is a direct consequence of the vector
potential, not the magnetic field itself. 

One can see that connection in a lattice in which atoms tun-
nel between adjacent sites. The AB phase acquired by an atom
as it encircles a square plaquette in the lattice, as shown in
figure 3b, is just the sum of the four phases gained on the as-
sociated links. 

Gauge fields in optical lattices 
Extending that one plaquette to a larger array would produce
a 2D square lattice with a constant magnetic flux in each unit
cell. But how can the tunneling phases be created in the labo-
ratory without the real magnetic field of a solenoid? The first
theoretical proposal was to make an artificial gauge field that
uses “laser-induced tunneling” of atoms between sites in an
optical lattice.8 In the proposal, the atoms don’t tunnel through
the barrier on their own volition; rather, they are pushed
through it with additional laser fields.

The concept is illustrated in figure 4, using just two lattice
sites: Imagine a conventional optical lattice that is tilted—with
one site higher in energy than the other. The tilting takes the
atoms in the two sites out of resonance with each other and
prevents tunneling. Two light fields whose photon energies
differ by the tilt energy then provide just the right amount of
energy to link the states together. 

In addition to reestablishing tunneling between sites, the

FIGURE 4. LASER-ASSISTED TUNNELING. The native tunneling in an optical lattice does
not produce the phase differences required to emulate a gauge field. But the phases can be
created in a two-step process. (a) When a potential gradient of energy Δ is applied to a 
lattice, the energy states in adjacent sites go out of resonance with each other, which blocks
a localized atomic wavepacket (pink) from tunneling. (b) Additional laser fields illuminating
the lattice can provide the required energy to reestablish tunneling (yellow arrow). The 
applied fields also imprint a local optical phase on the atom’s wavefunction as it moves 
between lattice sites.
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laser-induced tunneling also imprints a position-dependent
optical phase onto the wavefunction of the atoms. The phases
emulate the quantum mechanical phases picked up by elec-
trons tunneling between the lattice sites of a crystal in a real
magnetic field.7 The optical phases that accumulate around each
square plaquette in the lattice are equal and emerge from a uni-
form artificial magnetic field.  

Unlike in naturally occurring solids, where the magnetic
flux through a plaquette is much smaller than the flux quan-
tum h/q, where q is the magnitude of the relevant charge, very
large laser-induced fluxes can be produced in an optical lattice.
Figure 5a shows one experimental demonstration,9 in which an
atomic wave packet prepared in a single site of an optical lattice
undergoes cyclotron-like motion around a square plaquette; its
center-of-mass motion, from dark green to light green, is plot-
ted over 2 ms. A similar scheme was experimentally imple-
mented by Ketterle’s group around the same time.10 Nontrivial
phases have also been imprinted by literally shaking the optical
lattices,11 but in a way that does not correspond to a uniform
magnetic field.

Synthetic dimensions
An essential step in creating gauge fields with laser-assisted
tunneling is to suppress the native tunneling of atoms between
lattice sites. In the preceding section, we took the natural ap-
proach of using a tilted lattice to do the job. But that’s not the
only solution. Five years ago, a group of researchers, including
two of us (Spielman and Juzeliūnas), proposed a scheme using
transitions between different spin states of the BEC atomic
ground state to create “synthetic dimensions.”12

Lattice sites, according to that approach, need not be in dif-
ferent places in space. Dimension can also refer to the connec-
tivity, or number of independent states, into which the atoms
can tunnel. In addition to a real dimension, along which motion
corresponds to a displacement in space, there’s a synthetic di-
mension that corresponds to the internal spin states of ultra-
cold atoms. When lasers couple the spin states together, the re-
sulting “motion” between the spin states is accompanied by an
optical phase that gives rise to a uniform flux. 

The concept, which Spielman and others subsequently im-
plemented in 2015, offers new opportunities for control and
measurement.13 For one thing, it’s easy to detect individual syn-
thetic lattice sites using standard spin-selective detection tech-
niques. Also in 2015 Leonardo Fallani’s group concurrently
demonstrated the utility of synthetic dimensions in a degener-
ate Fermi gas of ytterbium.14

Figure 5b presents the experimental trajectories followed by
BEC atoms on a long, thin virtual strip, whose real dimension
is space, plotted horizontally, and whose synthetic dimension
is the atoms’ magnetic quantum numbers m = 1, 0, and −1, plot-
ted vertically.13 By preparing the atoms on the strip’s edges and
then allowing them to move in the artificial magnetic field, the
researchers observed them following “skipping orbits” along
the top and bottom edges. Each time an atom struck the hard-
wall potential along an edge, it reflected and began following
yet another cyclotron orbit.

To be non-abelian 
As we’ve seen, artificial gauge fields make charge-neutral par-
ticles curve as if they were under the influence of a Lorentz
force. But in quantum systems, the rabbit hole is deeper: As we
have noted, quantum particles have internal degrees of free-
dom, like the spin-up and spin-down of an electron. 

That simple addition opens the door for new kinds of so-
called non-abelian gauge fields, in which the effective Lorentz
force can depend on the magnitude and sign of the spin or
even drive changes to the spin state as the particle moves. (Such 
a non-abelian gauge field is distinct from the non-abelian 

FIGURE 5. DYNAMICS IN AN ARTIFICIAL GAUGE FIELD. Atoms that move from one optical lattice site to another under laser-assisted
tunneling circle through the sites, as in figure 3b. (a) One experiment measured the center-of-mass positions of atoms (dots) <x> and <y>,
scaled to the lattice constants dx and dy, as the atoms move among the four sites (inset) over 2.1 ms. (Adapted from ref. 9.) (b) In another
experiment, the positions (dots) of BEC atoms are mapped along the edges of a long, thin virtual strip. The horizontal dimension, scaled to
the lattice constants, is real, and the narrow dimension is synthetic, formed by the atoms’ spin states 1, 0, and −1. The edge currents to the
left (pink) and right (blue) evolve in time with opposite velocities and are the result of the “skipping orbits,” in which the atoms mimic 
cyclotron motion and periodically reflect from the strip’s edges. (Adapted from ref. 13.)

In addition to reestablishing
tunneling between sites, the
laser-induced tunneling also
imprints a position-dependent
optical phase onto the wave-
function of the atoms.



44 PHYSICS TODAY | JANUARY 2019

quasiparticles that are potentially relevant for quantum com-
putation. See the article by Nick Read, PHYSICS TODAY, July 2012,
page 38.) In essence, the Aharonov–Bohm phases φ of figure 3a
would each be replaced by a matrix that can give different phases
for the different spin states or that can even change the spin
state entirely. 

Spin–orbit coupling in a material is an interaction between
the electron’s momentum and its spin. In many cases, the in-
teraction is equivalent to a non-abelian gauge field. Spin–orbit
coupling is responsible for various interesting physical phe-
nomena—from the spin Hall effect to Majorana fermions and
topological insulators (see the box on this page and PHYSICS
TODAY, March 2011, page 20). By extending the ideas discussed
above, certain types of non-abelian gauge fields have also seen
the light of day in cold-atom experiments.7

Applications 
The experiments described in this article serve as quantum
simulations to better understand the toy models that approxi-
mately describe real materials. Vortex physics is an ideal target
for quantum simulation. Because the motion of vortices is a
leading source of dissipation in superconductors, understand-
ing them has wide-ranging real-world impact, from high-field
superconducting magnets used in medical magnetic resonance
imaging to magnetic levitating trains.

Much is still unknown about quantum vortices: How do
large collections of them interact and evolve? (See, for example,
PHYSICS TODAY, January 2017, page 19.) When do their positions
become pinned to the disorder potential? How do we under-
stand the flow of angular momentum in a material with vor-
tices, in analogy to the flow of electrons in a metal? Cold-atom
superfluids in the presence of an artificial magnetic field serve
as a medium for exploring those questions. 

Artificial gauge fields provide new techniques for realizing
topological states of matter (see the Quick Study by Mohammad
Hafezi and Jake Taylor, PHYSICS TODAY, May 2014, page 68).
Topological insulators and the integer and fractional quantum
Hall effects were discovered and understood in conventional
material systems, but the practical limitations of material sys-
tems hinder the ability to create new types of topological 
matter. For example, although many 2D models host anyon ex-
citations, their only known physical manifestation is the frac-
tional quantum Hall effect. Three- dimensional counterparts—
interacting topological insulators—are beyond the reach of
current experiment and theory. Cold atoms with artificial mag-
netic fields provide a realistic system experimentalists can use
to engineer and observe their exotic states.

Artificial gauge fields can also host completely new physics
that have no analogues elsewhere in nature. One example is
spin-½ bosons made with spin–orbit coupling. Recall that bosons
normally have integer spin and fermions have half-integer
spin. As in quantum Hall systems, spin-½ bosons would boast
a massively degenerate ground state and be ideally suited for
creating strongly correlated topological matter.16

The gauge fields present in high-energy physics are, like the
photon, dynamical gauge fields. Aspects of those dynamical
gauge fields may be modeled with time-dependent artificial
gauge fields. A dynamical gauge field samples all possible con-
figurations of the associated classical field. In certain cases,
quantum fluctuations in a dynamical gauge field have average

properties similar to that of noise added to a classical gauge
field. Sampling those fluctuations can be experimentally mod-
eled using atoms in optical lattices coupled to a synthetic gauge
field to which laboratory-controlled noise has been added.
That would be a good first step to simulating lattice gauge the-
ories in the low-temperature limit.
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Band insulators are crystalline materials with an energy gap
between the materials’ occupied valence bands and unoccu-
pied conduction bands. A single excitation produces a mobile
electron free to move in the crystal lattice. The charge and
quantum statistics of that excitation are the same as those of
the material’s constituent electrons.

Topological insulators (TIs) are a broad class of band insu-
lators, distinguished by different windings of the phase of the
atom’s eigenstates for different crystal momenta in the lattice.
Although excitations deep inside TIs separate, much like con-
ventional insulators, into valance and conduction bands, TIs
form new conducting states at crystal boundaries. (See the ar-
ticle by Xiao-Liang Qi and Shou-Cheng Zhang, PHYSICS TODAY,
January 2010, page 33.)

Strongly correlated materials give new excitations called
anyons. As Frank Wilczek put it, “The statistics of these objects,
like their spin, interpolates continuously between the usual
boson and fermion cases.”15 Often referred to as fractionalized
quasiparticles, anyons occur in strongly correlated topologi-
cally ordered states.

Such strongly correlated states are theoretically present in
various quantum spin models. But laboratory realizations of
TIs are few: They have been seen experimentally only in frac-
tional quantum Hall systems, which require highly restrictive
experimental conditions, such as ultralow temperatures, high
magnetic fields, and ultraclean samples. Strongly interacting
ultracold atoms subject to artificial gauge fields are one prom-
ising avenue for realizing those fractional states of matter.

TOPOLOGICAL MATTER


