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LARGE AMPLITUDE
OSCILLATORY SHEAR

imple to describe, hard to interpret

Simon Rogers

The response of a material to a periodic, large
strain manifests the internal mechanisms
by which the substance relieves stress. But
Nature does not readily reveal her tricks.

bulk material is deformed. Think of
entangled polymers moving like
spaghetti on your plate when you
twist your fork, with each noodle-like
polymer moving around its neigh-
bors. Or imagine clusters of colloidal
particles, such as those shown in

illy Putty, the classic toy that can stretch, bounce,
snap, and mold, provides endless hours of
amusement. It is an elastic liquid, so-called
because it simultaneously exhibits both solid-like
(elastic) and liquid-like (viscous) behaviors. The

viscoelasticity of Silly Putty is evidenced by the way it bounces off a
table like a rubber ball when interacting quickly with the surface and
flows like a thick syrup when left alone for a long time. Is Silly Putty
a solid or a liquid? The answer depends on the time scale over which
it is observed. Typical viscoelastic materials are elastic at short times

and viscous at long times.

Many important and familiar substances are viscoelastic.
Examples include biological and industrial macromolecules,
colloidal suspensions, emulsions, and foams. The characteristic
time that separates short-term from long-term behavior is
specific to each material and governed by the rate at which the
material can relax stress. That relaxation time is a macroscopic
manifestation of the microscopic processes by which molecular
or mesoscopic constituents rearrange themselves when the
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figure 1, rotating to let each other
pass. In general, materials comprising
larger constituents at higher concen-
trations have longer relaxation times,
because it is more difficult for the con-
stituents to move within their local en-
vironments. The community’s goal in
studying the rheology of viscoelastic
materials is to determine the micro-
scopic processes a material undergoes as it deforms or flows.
Such studies may lead to a next generation of smart materials
that have specific stimulus-dependent processes designed
into them.

Viscoelasticity spans the space between the behaviors of
elastic solids, in which stresses and strains are proportional,
and those of viscous liquids, in which stresses and strain rates
are proportional. Measurements of viscoelasticity require a
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way of probing a material’s solid-like and liquid-like responses
simultaneously. By far the most common experimental ap-
proach is to apply a shear strain that varies sinusoidally in time
and measure the stress response, a test devised by Andrew
Gemant' in 1935. Figure 2a shows a rheometer with which such
a test can be conducted. Alternatively, a sinusoidal shear stress
can be applied and the strain response measured, but I'll stick
to controlled-strain experiments, which cover the largest part
of the literature. Sinusoidal strains can be viewed as cosinu-
soidal strain rates. As described in the box on page 37, because
the strain and strain rate are perfectly out of phase, the elastic
and viscous contributions to the stress response are determined
by finding the parts that are in phase with the strain and the
strain rate.

The box details the case of linear viscoelasticity, for which
the stress—strain relations can be described by linear differen-
tial equations with constant coefficients. Linear viscoelasticity,
however, is limited to situations in which the material structure
is not significantly disrupted. Typical rheological studies are
carried out either to characterize an interesting material or to
better understand a particular industrial, environmental, or
biological process. Many of the materials in such processes
are subject to large and rapid deformations before they reach
steady flow —if they ever do.

How do we explore material responses to large strains? For
that matter, how large is large?

Unexplored territory

The oscillatory strain used to probe the solid-like and liquid-
like components of viscoelasticity has two tunable parameters:
the frequency of the oscillation, which governs the time scale
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being probed, and the amplitude, which governs the extent of
the deformation. Both parameters can be expressed in dimen-
sionless form to account for material-specific relaxation processes.

For oscillatory testing, the Deborah number De is defined as
the product of the frequency and the relaxation time (see the
article by Marcus Reiner, PHYSICS TODAY, January 1964, page 62).
It is the Deborah number that tells whether a test is fast or slow.
When De is large, the time scale of the observation is shorter
than the relaxation time and the material exhibits a more solid-
like behavior. Conversely, a small De corresponds to liquid-like
behavior. The Weissenberg number Wi in an oscillatory test is
equal to the product of the relaxation time and the amplitude
of the strain rate, and it says how severe the deformation is rel-
ative to the material’s ability to relax stress.

One can think of all oscillatory responses as residing in the
space defined by those two dimensionless numbers. A loosely
defined version of that space, reproduced here as figure 2b, was
first proposed by Allen “Jack” Pipkin in his 1972 Lectures on Vis-
coelastic Theory (2nd edition, 1986). Consistent with Pipkin’s pre-
sentation, the scales of the axes are distorted to encompass all
possible combinations in a compact graph.

Linear viscoelasticity —output linearly dependent on input—
corresponds to small-amplitude oscillations. The relaxation
time of a material is typically determined in the linear regime
by taking the reciprocal of the frequency at which the dynamic
storage and loss moduli, described in the box, become equal.
That value sets the scale that separates fast from slow processes.
If both Wi and De are small, the material undergoes Newtonian
flow; small Wi and large De corresponds to linear elasticity. At
small De, regardless of Wi, flow is said to be viscometric; large
De describes finite elasticity.

FIGUREM . TOOTHPASTE,
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are colloidal gels, in which
solid particles are dispersed
in a liquid. In this simulation
of a colloidal gel deformed
with large amplitude
oscillatory shear, colors
indicate clusters of colloidal
particles. (Courtesy of Jun
Dong Park, University of
lllinois at Urbana-Champaign.)



For the biggest region of the space defined by Pip-
kin, however, strain amplitudes are large and frequen-
cies are neither high nor low. Experiments probing
that region are called large amplitude oscillatory shear
(LAOS,) tests. As a consequence of the study of LAOS,
linear viscoelastic oscillations are now referred to as
small amplitude oscillatory shear, or SAOS. Some ex-
perimenters use MAOS for medium amplitudes, and
atleast one researcher has suggested XXLAOS for extra-
extra-large amplitudes.” Noting the proliferation of
naming schemes, MIT’s Gareth McKinley, in his plenary
lecture at the International Congress on Rheology in Lis-
bon, Portugal, in 2012, put forward the tongue-in-cheek
suggestion that CHAQOS enter the rheological nomen-
clature. Despite the various naming options, many re-
searchers take a binary approach: The nonlinearities
that exist in all real experiments are either insignificant
or too small to measure, in which case the experiment
is SAOS, or they are significant and the study is LAOS.

We researchers who conduct LAOS experiments
cannot treat the response as a sum of purely viscous
and purely elastic terms. Rather, we are forced to take
into account the inherent viscoelasticity. Typically, the
response to a sinusoidal input in the LAOS region is
not sinusoidal. Pipkin himself noted that “nothing
very systematic” is known about the region of large Wi
and modest De. To indicate how little had changed in
the 40 years since Pipkin first published his book,
McKinley, in the same plenary lecture in which he
made the CHAOS suggestion, labeled the LAOS region
with the appropriate anachronism, “Here be dragons.”

Linear oscillatory rheology has been studied for
more than 80 years in SAOS experiments, but LAOS
studies have become commonplace only in the past
couple of decades, with the advent of more sensitive

LINEAR VISCOELASTIC RESPONSE

If a material is not deformed too much, the effects of sequential changes
in strain are additive. To calculate the linear rheological response of a vis-
coelastic material, | turn to the Boltzmann superposition principle, which
states that the stress T at the present time tis an integral over all past time
of the relaxation modulus G multiplied by the rate of strain y:

t oo
v =[Gt - 1) p(e)dr =[ Ges) (e - s)ds, (1)
=G 0

wheres=t—t'.

Let y(t) = y, sin(wt) denote a sinusoidal strain of amplitude y, and an-
gular frequency w. If such a strain is imposed on a viscoelastic material,
then also imposed is a cosinusoidal rate of strain y(t) = y,w cos(wt). Sub-
stituting the expression for the strain rate into the Boltzmann superposi-
tion principle gives:

T =fG(s)y0 w cos[w(t —s)]ds
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0 0

The terms in the large parentheses are functions of frequency only, so the
response to oscillatory strains may be expressed as

T= )/O(G’(a)) sin(wt) + G"(w) cos(wt)). 3)

Equation 3 defines the dynamic storage and loss moduli G'(w) and
G"(w) as representing the parts of the stress response in phase with the
strain and the strain rate, respectively. Those dynamic moduli, respectively
proportional to the average energy stored and dissipated during a period
of oscillation, are typically interpreted as solid-like and liquid-like compo-
nents. As an important initial part of the characterization of materials,
typical rheological studies will report the dynamic moduli as functions of
angular frequency. All methods of understanding the oscillatory response
to large amplitudes reduce to equation 3 when the imposed amplitudes
are small.

transducers in commercially available rheometers. In that time,
investigations have used LAOS on a large variety of materials,
including biological macromolecules, polymer melts and solu-
tions, blends of polymers, block copolymers, polyelectrolytes,
surfactants, suspensions, and emulsions.

To the brink and back

Why are LAOS studies important? To some extent I addressed
that question when I noted that researchers seek protocols that
match the nonlinear and transient processing conditions im-
posed on real-world materials. In a LAOS test, an investigator
can control large, rapid deformations. LAOS is therefore a well-
defined standard protocol for obtaining information regarding
a material’s nonlinear viscoelasticity and the transient way it
changes in response to those deformations.

Two types of transience and nonlinearity are involved in
LAOS tests. Intercycle and intracycle measures, as the prefixes
suggest, provide information regarding changes between suc-
cessive oscillations and changes in a single oscillation. Intercy-
cle measures can be used, for instance, to determine how long
it takes for a material to reach a steady-state oscillating re-
sponse. Once at steady-state, intracycle measures on the mate-
rial can help explicate the nonlinear way in which the material
responds to strains and strain rates.

Different materials that have similar linear rheology can

have drastically different nonlinear rheology, and thus their re-
sponse to LAOS can provide information not available from
linear measurements. For example, LAOS can help differenti-
ate between suspensions of rigid and soft particles that would
look the same in SAOS experiments.

A LAOS study is an oscillatory protocol, but a second class
of transient protocols —steps—is also often used by researchers.
In a step experiment, the strain or the rate of strain is suddenly
changed, and the material’s response is recorded as a function
of time elapsed from the moment of change. For the nonlinear
rheological properties to be explored in the clearest conceptual
manner, the steps need to be large and instantaneous. A literal
instantaneous jump is not possible, and even tests that approx-
imate the instantaneous jumps with large ramps place consid-
erable loads on the materials and the testing equipment and
can lead to failure of one or both. In contrast, oscillatory meth-
ods are gentle; they impose smoothly changing deformations
with no sudden jumps. Deformations that would lead to ma-
terial failure in step tests can be applied in oscillatory tests. Like
the Road Runner being chased off a cliff by Wile E. Coyote, ma-
terials in a LAOS experiment can turn back and avert disaster.

Fourier-transform rheology

As I noted earlier, once more sensitive transducers became
widely available in commercial rheometers, investigators could
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FIGURE 2. AT THE HEART of a typical rheometer (a) is a working fluid, here a variety of blue Colgate MaxFresh toothpaste, sandwiched
between a lower plate and an upper surface that apply a shear strain. A transducer located above the frame of the photo converts the fluid’s
stress response into a measurable electronic signal. (b) Oscillatory shearing is described by two parameters with units of inverse seconds,
the amplitude y, of the strain rate and the frequency w. Each yields a dimensionless variable when multiplied by the relaxation time A. The
Deborah number De tells whether the applied strain oscillation is fast or slow; the Weissenberg number Wi quantifies the relative strength
of the material flow. The space of possible combinations of frequency and amplitude is typically referred to as Pipkin space. The fringes of
Pipkin space are well described by theories of viscometric flow, Newtonian flow (NF), linear viscoelasticity, linear elasticity (LE), and finite
elasticity, but the center of the space, where large amplitude oscillatory shear (LAOS) is situated, is still poorly understood. (Photograph by

Christine des Garennes, University of Illinois at Urbana-Champaign.)

perform LAOS experiments that provided clean, reliable data.
The next major challenge for the community to overcome —still
an active and ongoing avenue of research—is what to do with
experimental data once we’ve got them. That is, how do we
obtain meaning from the results? What formalism provides
clear and unambiguous physical interpretations in all cases?
The community has not reached consensus; in fact, the most
popular approach has changed numerous times in the past
decade. To date, the most useful avenues have relied on 19th-
century mathematics and are associated with the way LAOS
data are presented.

When a material is probed by LAOS, the sinusoidal strain
and strain-rate inputs and the nonsinusoidal stress output are
recorded. Displaying the stress as a function of time, as shown
in figure 3a, naturally leads one to ask about the frequency
components of the signal. Physical scientists and engineers are
well trained in analyzing periodic signals and moving between
the time and frequency domains. The Fourier transform (FT),
first introduced by Joseph Fourier in 1822, is the analysis tool
most often used to interpret LAOS results. The well-understood
concepts of Fourier transformation even permeate the lan-
guage surrounding LAOS. For instance, most researchers will
not say that nonlinear responses cannot be described by linear
differential equations with constant coefficients; they will in-
stead say that LAOS responses contain higher harmonics. Many
researchers have used FT-based approaches, but none have
done more to popularize the method than Manfred Wilhelm of
the Karlsruhe Institute of Technology in Germany. Wilhelm
and coworkers developed many methods to improve signal-
to-noise ratios, data handling, and processing, which together
they call FT rheology.’

One of the group’s notable successes started from an idea
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discussed earlier, that the viscoelastic response of a material
is a result of the way its constituents rearrange when de-
formed. Wilhelm, joined by Kyu Hyun of Pusan National Uni-
versity in South Korea and Victor Hugo Rolén Garrido and
Manfred Wagner, both of the Technical University of Berlin,
showed that nonlinear oscillatory rheology can differentiate
between polymers with different branching structures.* The
group coupled LAOS experiments with Wagner’s molecular
stress function theory and showed that the theory was able to
account for the scaling relations observed during frequency
and amplitude sweeps. For example, theory and experiment
are in accord that the ratio of third-harmonic intensity to first-
harmonic intensity is proportional to the square of the strain
amplitude.

Despite the widespread use of FT rheology, there remains
no clear physical interpretation of the experimentally mea-
sured higher harmonics for an arbitrary material. Recent theo-
retical work from a Thai-Canadian collaboration has produced
exact expressions for the higher harmonics in terms of the pa-
rameters of some simple models for LAOS flow, though it is
not yet clear how generally those expressions can be applied.®
Studies of LAOS using FT approaches typically follow the tack
of Wilhelm and colleagues and combine experimental results
with model predictions. The lack of a clear analytic strategy has
led researchers to propose other formalisms that lend them-
selves to more straightforward physical interpretation.

A consensus broken

Several researchers have advocated displaying the results of
an oscillatory test as Lissajous figures, parametric plots of os-
cillating signals first studied by Nathanial Bowditch in 1815.
(Jules Antoine Lissajous published his work in 1857.) Plotting
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FIGURE 3. DISPLAY METHODS for large amplitude oscillatory shear data are connected with the type of analysis used. (a) A nonlinear
periodic stress response plotted as a function of time invites a Fourier transform, which yields the spectrum of frequencies for the response.
(b) When the stress is plotted as a function of either the strain or the strain rate, it is natural to look for linear relations—that is, regions
where the derivatives are constant. (c) Stress plotted as a function of both the strain and the strain rate is usefully described in terms of the
geometry of trajectories in deformation space. (All panels adapted from ref. 9.)

stress parametrically against the strain or the strain rate, as
shown in figure 3b, gives what are called elastic or viscous
Lissajous figures, respectively. Such figures illustrate that the
stress response is a function not just of time but also of the
input deformation, and they provide a compact way of dis-
playing oscillatory data. Lissajous figures convert the problem
of explaining the higher harmonics obtained in Fourier-based
analyses into a geometrical question: how to meaningfully
interpret a shape traced out in stress—strain or stress—strain
rate space.

In 2005 Kwang Soo Cho from Kyungpook National Univer-
sity and Kyu Hyun, Kyung Hyun Ahn, and Seung Jong Lee at
Seoul National University in South Korea used symmetry ar-
guments in proposing a decomposition of the stress into two
constructions they referred to as the elastic and viscous stresses.®
Cho and coworkers defined those as even and odd functions
of the strain and strain rate and showed that they can be ob-
tained from the elastic and viscous Lissajous curves. Unlike the
Lissajous figures from which they are derived, however, elastic
and viscous stresses are single-valued in the strain and the
strain rate: With Cho and colleagues’ innovation, the complex-
ity of describing shapes had been reduced to the simpler task
of describing lines.

Three years after the publication of Cho’s stress decompo-
sition, Randy Ewoldt, Anette “Peko” Hosoi, and McKinley, all
from MIT, suggested that Chebyshev polynomials of the first
kind would be a useful linear algebraic basis for describing
Cho’s elastic and viscous stresses.” Using the polynomials in-
troduced by Pafnuty Chebyshev in 1854, Ewoldt and cowork-
ers proposed physical interpretations for the first two terms in
the expansions of Cho’s elastic and viscous stresses. For exam-
ple, Ewoldt and coworkers argued that a positive coefficient of
the third Chebyshev polynomial in the description of Cho’s

elastic stress leads to a greater stress at large strains than would
occur if only the linear term were present. Such an increase sig-
nifies strain stiffening. A positive value for the analogous com-
ponent in the expression for the viscous stress would be indica-
tive of shear thickening.

The LAOS community greeted Ewoldt and coworkers’
physical interpretations with excitement, particularly because
the theorists had also shown that the Chebyshev analysis was
simply related to the often used Fourier analysis. In fact, Fourier
transformation, the stress decomposition, and the Chebyshev
description were ultimately shown to be different expressions
of the same underlying structure.

The field of LAOS analysis seemed to have reached a point
of near consensus, with researchers free to choose among the
three equivalent major analysis frameworks. That consensus
was broken when Pavlik Lettinga and I, working at the Jiilich
Research Center in Germany, published work in which we
used simple models to show that the physical interpretations
derived from those frameworks could not be applied to all
LAOS responses.® The mathematics was sound, but the physi-
cal interpretations were more limited than had been thought
because the symmetries assumed by Cho and coworkers in
their stress decomposition were not always present. Given the
clear connection between the Fourier transformation, stress-
decomposition, and Chebyshev approaches, our exposition was
problematic. Another approach was needed.

Some investigators sought to describe the overall shape of
the Lissajous figures in a manner akin to the way Fourier trans-
formation views the entire period of oscillation as the object
to be described. Others, including me, took a different approach
and looked for parts of the response, as represented by the
Lissajous figures, that are locally linear. Those regions could
be easily interpreted as representing a sequence of physical,
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FIGURE 4. HYBRID RHEO-SCATTERING EXPERIMENTS involve scattering light, x rays,
or neutrons from samples undergoing deformation. In the left panel, a cylindrical rotating
bob immersed in a fluid sets up a shear field. Scattering provides information relating the
microstructure to the rheology. In this example, the fluid includes polymer-like micelles,
clusters of colloidal molecules. Shearing at high rates aligns the micelles and leads to

an anisotropic scattering pattern (central panel; yellow indicates greatest scattering and

blue least). In contrast, when the material is at rest, the scattering pattern is isotropic

(right panel).

elastic and viscous processes. Armed with that insight, Dimi-
tris Vlassopoulos, Brian Erwin, and I, all at the Foundation for
Research and Technology-Hellas in Greece, along with Michel
Cloitre from ESPCI ParisTech considered a glassy suspension
of star-shaped polymers.? By following sequences of elastic and
viscous processes, we were able to show that the LAOS re-
sponse of the glassy colloid (see figure 3) provided information
about the material’s linear viscoelasticity, typically obtained
from SAOS measurements, and its steady-state viscometric
flow properties, typically obtained by a series of long measure-
ments at constant shear rates. LAOS had been “brought in from
the cold,” so to speak, and had been shown to be a region of
the Pipkin space that, instead of being treated in isolation,
should be seen as a dynamic bridge that connects one axis to
the other.

More recently, I have further developed the concept of
physical-process sequences, '’ starting from an observation made
originally by Cho and coworkers.® They had noted that vis-
coelastic responses lie on a two-dimensional surface in the space
defined by the strain, the strain rate, and the stress. Figure 3c
shows an example of such a surface, which Cho and company
called a stress surface. In my work, I noted that the surface is
not explored arbitrarily, because of the specific imposition of
sinusoidal strains and cosinusoidal strain rates. I could thus
use the differential geometry of trajectories, first formalized by
Joseph Alfred Serret in 1851 and Jean Frédéric Frenet in 1852,
as a theoretical basis for a fully quantitative exposition of the
concept that nonlinear oscillatory viscoelastic responses repre-
sent sequences of processes. For the moment, at least, that work
stands as the state of the art for obtaining physical meaning
from LAOS experiments.

Beyond stress measurements

The fundamental thesis underlying studies of viscoelasticity,
including those that use LAOS experiments, is that the macro-
scopic response is a manifestation of microscopic processes.
Researchers have done much work to deduce the microstruc-
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tural response of a material from its rheology, but, more and
more, researchers are using powerful structural techniques to
measure how material constituents rearrange. Approaches that
combine rheological information with structural probes include
rheo-NMR" and rheo-scattering.'?

Hybrid experiments typically include a rheometer in an ex-
ternal magnetic field or a beam of laser light, x rays, or neutrons
in such a way that the NMR or scattering experiment can pro-
ceed normally as the material is subjected to a controlled de-
formation; figure 4 schematically illustrates a rheo-scattering
experiment and shows the type of data such experiments yield.
The results are analyzed with typical methods, but great care
must be taken to account for the temporal variations brought
about by the rheological protocol.

As rheologists more deeply explore the transient nonlinear
viscoelasticity of soft materials and discover more about the
ways in which their constituents move and rearrange, we also
deepen our understanding of the testing protocols and learn
how to design more specialized experiments. The more we
learn about the sometimes subtle, sometimes drastic changes
that occur during deformation, the more we will be able to in-
corporate those lessons into the design of a new generation of
smart materials.
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