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The family lived in Kharkov, Ukraine, a cultural and indus-
trial center that was also becoming a notable science hub. The
Ukrainian Institute of Physics and Technology (UPTI), founded
there in 1930, attracted visits from the likes of Niels Bohr and
Paul Ehrenfest. In 1932, fresh from his 18-month stay in Eu-
rope, Lev Landau arrived in Kharkov to lead the theoretical di-
vision at UPTI and, simultaneously, to take up a chair in theo-
retical physics at Kharkov’s Mechanical Engineering Institute. 

The following year, Ilya became a physics student at the Me-
chanical Engineering Institute. In parallel, he studied pure
mathematics at Kharkov University, whose faculty included
several first-rate mathematicians. Ilya also studied music at 

the Kharkov Conservatory. Though he
never completed the program, he took
great pleasure in playing piano at
home for his family and friends. Much
later he took up stamp collecting as a
hobby and achieved an international
reputation.

Always independent, Ilya carried
out his PhD work without an adviser;
he would later emphasize tactfully that
although Landau was a hugely bene-
ficial influence, he had never been Lan-
dau’s student. In light of that, Landau’s
Moscow disciples jokingly called Ilya
an appanage prince, referring to the
younger members of a royal family
who are given a small portion of the
kingdom to provide income until they
inherit a more important position.

Nevertheless, on Landau’s death in 1968, it was Ilya who be-
came his successor as head of Moscow’s prestigious theoretical
division in the P. L. Kapitza Institute for Physical Problems.
Thus, for the last 14 years of his life, Ilya worked next door to
his older brother.

A man of deep decency
Ilya and Evgeny shared a devotion to science, but in many
ways they were very different. Meticulously dressed, efficient,
lean, and unsmiling, Evgeny hardly ever supervised graduate
students. By contrast, Ilya was stouter and radiated friendli-
ness; students, colleagues, and collaborators seemed unable to

Virtually every physicist has encountered the famous
Landau and Lifshitz textbooks, but many may not know
that there were two Lifshitz brothers, both physicists.
The textbook Lifshitz is the older, Evgeny Lifshitz
(1915–85); this article concerns the younger, Ilya Lifshitz

(1917–82), shown in figure 1 as a young man. Their parents were
Mikhail Lifshitz, a physician, and Berta. Mikhail was from a poor Jewish
family that lived in the Pale of Settlement in tsarist Russia. He received
his medical education in Heidelberg, Germany, where he won a gold
medal for student research and, according to family legend, was 
presented to Queen Victoria as one of the best European medical 
students. As was traditional in such families, Evgeny and Ilya received
a sound early education at home. Evgeny excelled in languages; Ilya
was proficient in music.
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This year marks the centenary of the birth of Ilya

Mikhailovich Lifshitz, who helped found the field of

fermiology and made important contributions to 

condensed-matter physics and biophysics.



FOR DOLORES (Flores para los muertos), by Tony Smith,
was inspired by the Fermi surface of lead. (Raymond and
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resist his charm. When he taught or delivered
a seminar, his enthusiasm was infectious. Ex-
cited, he could easily forget his somewhat old-
fashioned manners: Once, when trying to ex-
plain knots in DNA to a large audience, he
theatrically removed the belt from his trousers.1
Even in later life, after he had received many
honors, Ilya was almost childishly excited about
any discovery—his or someone else’s—that
showed intellectual beauty. In his office, one
met mathematicians, polymer chemists, and
biophysicists besides the usual theoretical and
experimental physicists.

Ilya had harmonious relationships with his
students. He worked individually with each
and was sensitive to the moment when one was
mature enough to become independent. Often,
he would take a few students and start a new
research direction; his colleagues would shrug
their shoulders and ask, “Why metals?” When,
after some years, those students had become renowned author-
ities in their still-fertile field, Ilya would suddenly abandon it,
take a few new students, and jump into something entirely dif-
ferent. Yet again there would be muttering: “Why polymers?”

In the USSR of those days, it was impossible to hide from
difficult interactions with the authorities. Neither Lifshitz was
an open dissident, but each refused to tarnish himself with a
morally questionable act. For instance, during a press campaign
accusing Andrei Sakharov of anti-Sovietism, senior scientists
came under enormous pressure to sign condemnatory letters.
Many did, but not the Lifshitzes. When Mark Azbel, one of
Ilya’s outstanding disciples, became a refusenik—that is, the
authorities refused to permit his emigration—many colleagues
were afraid even to talk to him. But not Ilya. One of us (Gros-
berg) witnessed how Mark stood alone in the lobby of a Moscow
seminar room, with no one approaching him, until Ilya entered
and, with his friendly smile, started a conversation. He was not
a hero; he was just a man of a deep decency—and that’s not in-
significant in a totalitarian state.

Ilya did not aim to climb high on the administrative ladder,
but he did receive the highest scientific distinctions in the USSR.
He was particularly proud to be elected a member of the Soviet
Academy of Sciences in 1970; he explained privately that vot-
ing for academy membership was the only secret ballot in the
country. Neither his academic title nor the tremendous reputa-
tion he enjoyed among his colleagues protected him from dis-
appointing treatment by administrators; the many bitter set-
backs he endured ranged from issues of student recruitment
and employment to the leadership of his departments at
Moscow State University.

Having described the man, we now turn to three of his sci-
entific achievements.

Fermiology
Rudolf Peierls told one of us (Singleton) that Ilya Lifshitz was
the person who defined a metal as “a solid with a Fermi surface,”
even though others set those words down in print first.2 Be that
as it may, Lifshitz and collaborators certainly expressed them-
selves memorably on the subject. For example, in a paper with
Moisei Kaganov he wrote, “Each metal acquired its own

‘face’. . . . its Fermi surface, a ‘visiting card’ describing the con-
stant-energy surface which at zero temperature separates the
occupied from the empty states in quasi-momentum space.”3

The reference to the constant-energy surface is the definition
of the Fermi surface that we nowadays teach to students. The
earlier part of the quote refers to one of Lifshitz’s major
achievements—a model that, for the first time, allowed three-
dimensional Fermi-surface shapes to be deduced from experi-
mental observations.4

Why is the Fermi surface important? To quote Lifshitz and
Kaganov again, it is “the stage on which the ‘drama of the life
of the electron’ is played out.”2 The Fermi surface is the only
place in k space where filled and empty states are adjacent 
(k is the quasi-momentum mentioned above, the conserved
quantity that replaces momentum for a particle in a spatially
periodic potential). As such, it determines all of a metal’s prop-
erties. A knowledge of the Fermi surface—the goal of fermiol-
ogy—enables one to check band-structure models and to un-
derstand most of the mechanical, electrical, and magnetic
properties of a metal.2,4,5

Lifshitz’s interest in fermiology came via Landau. In 1930,
soon after Arnold Sommerfeld successfully applied quantum
statistics to the theory of metals, Landau famously predicted
diamagnetism due to the orbital motion of band electrons. His
paper contains a laconic statement about magnetization oscil-
lations that are periodic in 1/(magnetic field), a phenomenon
now known as the de Haas–van Alphen (dHvA) effect. Landau,
however, dismissed the effect as unobservable under the ex-
perimental field strength and homogeneity then available. He
was certainly correct for most metals, but ironically, just a few
weeks after his paper appeared, Wander de Haas and Pieter
van Alphen reported their first experimental observations of
magnetization oscillations in the semimetal bismuth.4

The Hamiltonian of an electron in a magnetic field can be
solved analytically only for a Fermi surface that is a sphere or
an ellipsoid of rotation; that was the approach followed by
Peierls, Landau, and others during the 1930s to analyze in-
creasingly sophisticated dHvA experiments on bismuth. How-
ever, bismuth is a special case, a semimetal with a simple Fermi
surface consisting of four tiny, ellipsoidal pockets. The small

FIGURE 1. ILYA MIKHAILOVICH LIFSHITZ

in the late 1940s. (Courtesy of Z. I. Freidina,
from the Lifshitz family archive.)



NOVEMBER 2017 | PHYSICS TODAY 47

pocket size causes widely spaced dHvA oscillations, so field in-
homogeneities are not worrisome. The ellipsoidal shape gives
rise to an easily understood dependence of the oscillations on
the orientation of the field with respect to the crystal axes.

After World War II and its interruption of further investiga-
tions, it came as something of a surprise when a succession of
true metals exhibited a plethora of dHvA oscillations with much
more complex field-orientation dependences. The ellipsoidal-
surface model was inadequate to explain those data, which de-
manded a theory for the quantum mechanics of electrons on
an arbitrarily shaped Fermi surface exposed to a magnetic field.

Fantasies of a modern artist
Lifshitz’s insight was to apply Bohr’s correspondence principle
to closed electron orbits on the Fermi surface in a magnetic
field—that is, to assume that the difference in energy of adjac -
ent levels is ħ times the angular frequency of the corresponding
classical motion. The frequency at which electrons orbit,
known as the cyclotron frequency, is proportional to the field;
it determines the separation of the electrons’ energy levels, now
called Landau levels (LLs). Each closed orbit about the Fermi
surface (see figure 2a) will have its own set of LLs, but it turns
out that the LLs associated with extremal orbits dominate the
response of the metal.

Because the LL spacing is proportional to the magnetic field,
an increase in the field causes LLs to successively approach,
pass through, and exit the Fermi surface as their energies rise
above the surface’s energy—the Fermi energy. The field increase
thus modulates the density of states at the Fermi energy and
causes the metal’s properties, including magnetization, to os-
cillate. Each extremal orbit contributes a series of such oscilla-
tions (see figure 2b).

The correspondence principle is only valid for large quan-
tum numbers. But Lifshitz realized that it always applied to
conventional metals in the experimental fields of the time,
which even in pulsed magnets rarely exceeded 10 T. Proceed-
ing from that premise, he found that the inverse of the period -
icity of each series of dHvA oscillations is proportional to the

corresponding extremal cross-sectional area of the Fermi sur-
face in the plane perpendicular to the magnetic field. (Figure 2a
shows the geometry.) Consequently, dHvA data in which the
field is applied at various angles to a crystal could be used to
map the 3D Fermi-surface shape. Lifshitz described the idea in
a seminar in 1950; Lars Onsager independently published sim-
ilar conclusions in 1952. With Arnold Kosevich, Lifshitz further
developed the theory to take into account temperature and 
impurity scattering. Their Lifshitz–Kosevich formula enables
the extraction of such electronic parameters as effective masses,
g factors, and scattering rates.

Lifshitz and coworkers then studied how a metal’s resistivity
in a magnetic field depends on the kinetics of electrons at the
Fermi surface. They analyzed the Shubnikov–de Haas (SdH)
effect—resistivity oscillations analogous to dHvA oscillations
in magnetization. They also showed that the field-orientation
dependence of various components of a metal’s resistivity ten-
sor could be used to map out details of the Fermi surface, an
observation that follows from the fact that trajectories on the
surface can be closed or open, as illustrated in figures 2c and 2d.

Even today, dHvA and SdH oscillations are experimental
tools of choice for studying many aspects of metals. They are
applied to substances as diverse as heavy-fermion compounds,
whose novel properties derive from partially filled f orbitals of
rare-earth or actinide ions, cuprate semiconductors, and crys-
talline organic conductors. All those and more are now regarded
as metals because they possess Fermi surfaces.

This introduction to fermiology concludes with a hot topic
in condensed-matter physics: changes in the topology of a Fermi
surface, or Lifshitz transitions. If a metal is subject to pressure,
to give one example, a Fermi-surface section such as that shown
in figure 2a may constrict so much that the narrow necks dis-
appear. At that instant, the Fermi-surface topology changes
from an extended object to a series of isolated pockets. Lifshitz
transitions are thought to be important in many areas of
physics, including high-temperature superconductivity, topo-
logical insulators and other topological materials, and even
black holes.6

FIGURE 2. FERMIOLOGY. (a) The
Fermi surface of a metal lives in 
so-called k space, with the quasi-
momentum k being the conserved
quantity that replaces momentum 
for a particle in a spatially periodic
potential. In the presence of a 
magnetic field B, the closed orbits of
electrons define planes perpendicular
to B. The orbit frequency, which gives
the spacing between energy levels, 
is proportional to B; increasing the
magnitude of B forces those levels to
leave the Fermi surface one by one,
so the metal’s properties oscillate. 
Extremal orbits such as the ones
shown in color dominate the 
response. (b) Resistivity oscillates in
response to an increasing magnetic
field. The experimental measurements
(black) used an RF technique in

which frequency change (Δf ) is proportional to the change in resistivity. The simulated results (red) were obtained using a variant of a formula
derived by Ilya Lifshitz and Arnold Kosevich. The beating shows that more than one extremal orbit contributes to the resistivity change. (Adapted
from ref. 15.) Orbits on the Fermi surface can be closed (c) or open (d). In both cases, the electron velocity is perpendicular to the surface, as
 illustrated by the arrows. The corresponding real-space trajectories result in different behaviors of the resistivity.
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Lifshitz was modest about his pivotal contributions to
fermiology. He likened the increasingly exotic Fermi surfaces
extracted from his insights to the fantasies of a modern artist.
It was a prophetic description. The Fermi surface of lead in-
spired the sculpture shown on page 45: For Dolores (Flores para
los muertos), by Tony Smith.2

Disordered systems
Lifshitz published his first paper on disordered systems when
he was only 20 years old. It was an analysis of the diffuse scat-
tering of x rays due to defects in a crystalline lattice. Soon after-
ward, he turned to the impact of defects on absorption and re-
fraction of IR radiation.7 Since an IR wavelength is very large
compared with the atomic spacing in a crystal, Lifshitz analyzed
the problem in terms of the coupling of vibrational modes to a
uniform electric field that oscillates at the IR frequency.

For a lattice without disorder, IR radiation can be absorbed
only if the incident photons are matched to the frequency of a
vibrational mode with quasi-momentum k = 0. Below each ab-
sorption frequency is a finite frequency band for which inci-
dent radiation will be totally reflected at the crystal surface. For
frequencies outside the bands of total reflection, a fraction of
the incident power will be transmitted into the crystal and
propagate without absorption.

The situation is qualitatively different for a crystal with dis-
order. Because the disorder allows momentum to be freely trans-
ferred to the lattice, the energy of an incident photon can be
transferred to any phonon with a matching frequency, regard-
less of the phonon’s k. Consequently, radiation of any frequency
within the range covered by the entire set of the crystal’s phonons
will have a finite absorption length. In addition, defects can
lead to localized vibrational modes outside the frequency range
of the perfect crystal; IR radiation with frequencies matched to
those extra modes will also be absorbed.

Lifshitz tails
Many of the effects of disorder on vibrational modes have par-
allels in the theory of electronic states in a disordered system.
Hence, Lifshitz was naturally interested. His most famous con-
tribution was his 1964 description of what are commonly referred
to as Lifshitz tails, regions of energy in which the electron 
density of states might be expected to be zero but is actually
nonzero because of rare fluctuations in the local density of 
impurities.8

As a simple example, consider a model in which space is di-
vided into cubic cells with sides of length a. Within any cell,
the potential V is constant and takes on one of two values: Ei-
ther V = U, with probability p, or V = 0, with probability 1 − p
(see figure 3a). If p is small, one can think of the cells with V = 0
as the host crystal and the remaining cells as impurities. The
issue to be addressed is the density of states at low energies for
a quantum particle of mass m moving in the potential V. Sup-
pose that ∣U∣ is very small compared with ħ2/ma2, an expression
that estimates the kinetic energy EK paid to confine the mass to
a single cell. In that case, a low-energy particle would not be

sensitive to the potential in any one lattice cell but would in-
stead respond to the potential averaged over a region contain-
ing many cells.

To a first approximation, the particle would behave as though
it were moving in a uniform potential equal to the average po-
tential in the crystal, V‾ = pU. The density of states would thus
be zero for energies E less than V‾ and otherwise would be that
of a free particle, proportional to (E − V‾)1/2.

In reality, however, there will always be states with energies
less than V‾. For example, if U is positive (and thus so is V‾), the
lower bound to the energy spectrum will actually be at E = 0.
After all, statistical fluctuations guarantee that an infinite sam-
ple will have impurity-free regions of arbitrarily large size, and
a particle confined to a sufficiently large empty region can have
an energy arbitrarily close to zero. For a spherical region of 
radius R without impurities, there must exist at least one elec-
tronic state that is localized in the region and that has an en-
ergy E equal to or less than a value on the order of EKa2/R2. The
probability P that a region of radius R actually is devoid of im-
purities is given by P = (1 − p)N, where N is the volume of the
sphere in units of a3. Noting that N ∝ R3 ∝ E −3/2, one obtains in
the limit of small E a rough estimate for the number of energy
states per unit volume with energy less than E: exp[−p(E0/E)3/2],
where E0 is on the order of EK. The analysis for the case U < 0
proceeds similarly, but the bottom of the energy band is at U
rather than 0.

Figure 3b shows the low-energy density of states according
to the argument just sketched. A more careful analysis reveals
that the most probable spherical region for confining a state of
low energy is not completely devoid of impurities but instead
contains a small residual density that depends on E and U/EK.
Further refinements take into account fluctuations about the
optimal distribution of impurities. Those improvements lead
to a more accurate value of the parameter E0 and to better es-
timates of the preexponential factor in the density of states, but
do not affect the overall conclusion that the density of states
has an exponentially falling tail at energies below V‾. In his 1964
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FIGURE 3. A LIFSHITZ TAIL.

(a) In a simple model of a
disordered crystal, impurities
are randomly distributed 
regions of space in which
the potential is U (blue bars)
rather than 0. The average
potential V‾ is equal to U
times the probability that
a crystal site houses an 
impurity. (b) In a uniform potential of V‾, the density of states as a
function of energy would go to zero at V‾, as indicated by the red
portion of the curve. Because of the random nature of the impurities,
however, the density of states has a Lifshitz tail, an exponential tail
extending down to zero energy. 
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paper,8 Lifshitz used extensions of the above reasoning to esti-
mate the density of states in the entire region between the bottom
of the energy band and the mean potential V‾ for both positive
and negative U.

The concept of Lifshitz tails has influenced thinking in sev-
eral fields. Lifshitz tails have been invoked, for example, in dis-
cussions of electron mobility in disordered systems and of op-
tical absorption at frequencies below the threshold that would
exist for a perfect crystal. Related concepts have been used to
describe peculiar phases of disordered magnetic and ferroelec-
tric systems.9

Polymers and biophysics
In the mid 1960s, Lifshitz shifted his interest to polymers,
which were also attracting the attention of Samuel Edwards
and Pierre-Gilles de Gennes. The three revolutionized the way
physicists think about polymers and 
in the process spawned the field of soft
condensed-matter physics. However,
their paths to polymers were very differ-
ent. Interested in chemical engineering
applications, Edwards was attracted by
gelation and rubber elasticity, whereas
de Gennes famously recognized a math-
ematical mapping between polymers
and a particular limit of critical phenom-
ena. By contrast, Lifshitz (shown later in
his career in figure 4) came to polymers
from biophysics—not a trivial point
given that in the USSR of the 1960s, any
involvement in modern biology had a
clear flavor of political disobedience. Ex-
cited by the initial discoveries of molec-

ular biology, Lifshitz was the first to recognize the connection
between biopolymers and disordered systems.

Based on that connection, Lifshitz’s main contribution to
polymer physics is the theory of the coil–globule phase transi-
tion, also called polymer collapse (see figure 5). That a concept
such as a phase transition can be applied to a single molecule
is not obvious; even the longest polymer chains have nowhere
near the number of particles found in conventional macro-
scopic systems. Nevertheless, polymer collapse is a phase tran-
sition in the sense that the width of the ambiguous zone sepa-
rating the fluffy fluctuating coil from the dense liquid-like
globule systematically decreases as the chain length increases.
The coil–globule transition is, in most cases, very smooth—an
almost pure second-order transition. However, the presence of
surface energy makes the transition weakly first order, one that
produces a small latent heat proportional to the surface area of
the globule rather than to the number of particles in the chain.

To approach the equilibrium statistical mechanics of poly-
mer globules, Lifshitz assumed that a chain link at spatial point
x feels an external potential U(x). He then considered the par-
tition sum over all spatial conformations of a chain and noticed
that the sum was mathematically similar to the Feynman path
integral for a quantum particle moving in a potential propor-
tional to U(x)/kBT, with kB being Boltzmann’s constant and T the
temperature; Edwards had independently reached the same con-
clusion. 

Unlike Edwards, however, Lifshitz paid attention to the cor-
responding Schrödinger equation. In that context, when U(x) is
a potential well, the effective potential U(x)/kBT becomes deeper
as the temperature decreases. Lifshitz elegantly interpreted the
simplest coil–globule transition as occurring at the temperature
at which the discrete ground-state energy level splits from the
lower border of the continuous spectrum. Indeed, the discrete-
level wavefunction corresponds to the globule form of the poly-
mer chain, confined within the potential well. Lifshitz’s theory
is quite a contrast to the critical- phenomena concepts developed
simultaneously, mostly by the de Gennes group, and it was
 initially received with skepticism. The controversy was fruitful,
as its resolution brought forth an understanding of where the
critical-phenomena and mean-field approaches were applicable.

Another interesting controversy arose in the early to mid
1970s, when the Lifshitz theory, with its predicted almost-second-
order transition, was compared with experiments on protein

FIGURE 5. THE COIL–GLOBULE TRANSITION. A polymer, here
represented in a ball-and-stick model, can transition between a
space-filling globule (left) and a fluffy coil (right).

FIGURE 4. AT A MEETING WITH PHYSICS STUDENTS. During
the 1979 gathering at which this photo was taken, Ilya Lifshitz
was asked what kind of person should become a theorist. He
replied, “If you feel clumsy and break equipment in the lab, this 
itself is not a sufficient reason to become a theorist. There should
be some positive motivation.” (Courtesy of Z. I. Freidina, from the
Lifshitz family archive.)
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globules. At the time, Lifshitz and others thought of the dena -
turation and renaturation as the globules’ unfolding and re-
folding and viewed those processes as coil–globule transitions
par excellence. But the experiments showed that the transitions
produced a large latent heat, comparable per particle to that
observed in the melting of regular molecular crystals. The first
explanation was rather dismissive: The Lifshitz theory was for
homopolymers consisting of a single monomer species, whereas
proteins are obviously heteropolymers. Such a discouraging
conclusion could be justified from Lifshitz’s papers, which ad-
dressed homopolymers only. But in seminars that , unfortu-
nately, were not presented anywhere outside the USSR, more
generally applicable arguments were discussed and honed.

Years later Lifshitz’s ideas bore fruit in biophysics, once it
was understood that the first-order nature of coil–globule tran-
sitions in proteins is a property of particular amino-acid se-
quences. Theoretically, such sequences could be identified and
created by computer or in real experiments via a process called
sequence design. The new understanding permitted biophysi-
cists to estimate the number of sequences exhibiting first-order
folding transitions and led to the idea that such sequences have
been selected by evolution for their stability against mutations
and environmental perturbations.10,11

Lifshitz’s insights into polymer globules have also informed
the now hot topic of genome folding. The puzzle is to under-
stand how 2 m of DNA are housed and accessible in the 10 μm
nucleus of every cell of the human body.12–14

Ahead of fashion
In a career spanning from the end of the 1930s to the start of
the 1980s, Ilya Mikhailovich Lifshitz had a remarkable influence
on the study of fermiology, disordered systems, and biophysics.
He also made other contributions, no less impressive, some of
which are among his most cited. Those include work with 
Vitaly Slezov on the kinetics of first-order phase transitions 
(including the famous t1/3 law describing the growth of the 
nucleus of a new phase), a study with Alexander Andreev on
quantum diffusion of vacancies, and an investigation of quan-
tum-tunneling kinetics of nucleation with Yuri Kagan. Many
times, when Lifshitz entered a field, he was not following fash-
ion. But fashion often followed him, even if it sometimes took
20 years to catch up.
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