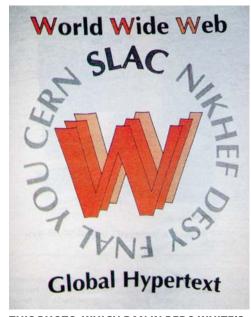
FROM THE EDITOR

Our new website

Charles Day

he World Wide Web, to give the internet's most prominent information space its full name, broke out of its academic cocoon in 1993, when the National Center for Supercomputing Applications released its Mosaic browser to the public for free. Physics Today made its Web debut about two years later.


In those early years the magazine's webpage contained little more than the monthly table of contents and a calendar of upcoming physics meetings. It was largely the work of one of the magazine's editors, Graham Collins, who also added a few feature articles hand-coded in HTML. The first issue to be fully accessible online in HTML was that of June 2000. PDF versions followed seven years later.

PHYSICS TODAY's webpage continues to evolve. Today, if you point your Web browser at physicstoday.org, you'll find its newest incarnation, which made its debut on 12 December. The first thing you'll likely notice is that the home page looks more like that of a typical magazine. You'll see greater emphasis on eye-catching graphics. And as you explore the website, you'll find that both browsing and searching are easier than before.

The amount of Web-exclusive content has increased. Today in History is a popular feature of PHYSICS TODAY's Facebook page. Now it also appears

on the magazine's website. Look out, too, for more news about research and more columns by notable researchers and PHYSICS TODAY editors.

I can't remember when I first became aware of the potential of sharing information via the Web, but it can't have been later than 1995. That year, when I was still working at NASA's Goddard Space Flight Center, I wrote an online guide to analyzing data from the Japanese x-ray astronomy satellite *ASCA*.

THIS PHOTO, WHICH RAN IN BEBO WHITE'S 1998 article, shows a commemorative T-shirt from the Computing in High-Energy Physics conference of 1992. The shirt lists the five labs that had websites in that year. "YOU" was an encouragement to other labs to create their own websites.

A feature article that I edited early in my career at PHYSICS TODAY gave me a further glimpse at what the future of the Web might hold for physicists and physics. In "The World Wide Web and high-energy physics," which appeared in November 1998, Bebo White recounted the Web's genesis at CERN and its spread among the particle-physics community. To this day, I remember two of the article's principal lessons: Protocols and standards are important; and if you want a new internet technology to be widely adopted, make it free.

What I'd forgotten from Bebo's article is the box about the Web's future impacts. When I reread it, I was struck by how visionary it was—and remains. Bebo foresaw some features of the new academic publishing land-scape, notably the use of metadata to facilitate searching for relevant journal papers and the challenge that online access would pose to the traditional subscription model.

Whether Bebo's hopes that the Web would transform scientific collaboration have been realized is debatable.

On the one hand, we don't yet have what he referred to as a collaboratory, a virtual center where "researchers can perform their research without regard to geographical location—interacting with colleagues, accessing instrumentation, sharing data and computational resources, and accessing information in digital libraries." But on the other hand, we do have a suite of tools, such as Skype, Dropbox, and Google Docs, that, together, approach Bebo's vision of a collaboratory.

Bebo's article is well worth reading. Look for it on our NEW WEBSITE.