
The same connections that give a network its 

functionality can promote the spread of failures and

innovations that would otherwise remain confined.
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A defining characteristic of networks is their ability to prop-
agate influence; they allow the state or behavior of one node to
influence the state or behavior of others. Influence may spread
across networks by way of ordinary contact processes such as
epidemic spreading or diffusion. But influence may also spread
through a fundamentally different process: a cascade. 

Cascades are self-amplifying processes by which a rela-
tively small event may precipitate a change across a substantial
part of a system. Often, cascades are to be avoided: They may
cause blackouts in power grids, congestion in traffic systems,
widespread defaults in financial networks, and mass extinc-
tions in ecosystems. In some scenarios, however, cascades are
essential to a network’s functionality: Biochemical cascades un-
derlie intra- and intercellular signaling networks, plea-bargain
cascades have become integral to the criminal justice system,
and social cascades facilitate the spread of technology adoption
and cooperation. Cascading processes have been exploited to
maximize the effects of get-out-the-vote and other behavior-
change campaigns, content sharing in social media, and viral
marketing. (See figure 1 for representative examples of net-
work cascades.)

Modeling cascades in large and complex networks, how-
ever, is a nontrivial task; predicting, preventing, or promoting
them even more so. Ideally, one would like to be able to do all
those things; control over cascades could, in theory, lead to self-
healing networks, new therapeutic treatments, prevention of
widespread financial crises, and more robust power grids. 
Although the path to cascade control is beset by stumbling
blocks, a broad, interdisciplinary effort to surmount them is 

already afoot. Here we describe some 
of the recent progress and outstanding
problems.

What’s so special?
To understand the intrinsic differences 
between cascades and other network
spreading processes, it’s helpful to com-
pare the cascading of outages in a power
grid with the epidemic spread of flu 
in an unimmunized population of like 
individuals. 

In a cascade, nodes are affected by
their neighbors in nonadditive fashion. In
a power grid, for instance, a station’s re-
sponse to an outage at a neighboring sta-

tion depends not only on the failed neighbor but on the states
of the other neighbors. So whereas a susceptible individual 
always has a nonzero probability of contracting the flu from 
a contagious contact, the probability of a power station adopt-
ing a neighbor’s failed state may be zero, if no other neighbors
have failed. 

Because of nonadditivity, the spread of a new behavior or
state often requires reinforcement, such that a given node must
see multiple neighbors change before it, too, changes. Networks
with local redundancies and other structures allowing rein-
forcements can therefore be more susceptible to cascades.1 By
contrast, epidemics propagate more efficiently in networks
with long-range connections, such as random ones. The inter-
play between network structure and nonadditivity can be crit-
ical to network spreading phenomena. 

Consider, for instance, that in 1970 gonorrhea led the list of
infectious diseases in the US despite evidence that infected in-
dividuals transmitted the disease to less than one partner, on av-
erage. The proposed explanation was that a core subpopulation
of only 2% of the susceptible individuals was responsible for
60% of all infections.2 Had the disease spread via cascade-like
dynamics, the need for reinforcement would have effectively
limited the infection to the core and no one else.

A second distinguishing feature of cascades is that they may
propagate nonlocally; one node’s change in state may alter the
states of other nodes without changing the states of nodes in
between.3 A power station may fail even if none of its immedi-
ate neighbors have, whereas in a flu epidemic, the virus can reach
an individual only through a neighbor who is contaminated

It would be just a small exaggeration to say that we have
reached the “network age.” A growing number of diverse 
systems are being represented as networks—collections 
of nodes that interact through links or connections. Think 
of engineered materials, intracellular media, organismal

physiology, ecological systems, and swarming robots. Moreover, 
networks—be they financial, transportation, power-transmission,
information- exchange, or social-interaction—are increasingly
coming into existence as a result of human activity. (See the article
by Adilson Motter and Réka Albert, PHYSICS TODAY, April 2012, 
page 43.)
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(assuming the network is the only medium for transmission).
Nonlocality is expected to be most pronounced in networks
with little clustering and large average path length, such as
power grids. (The path length between two nodes is the num-
ber of connections along the shortest path between them.) 

A third key feature of cascades is disproportional impact:
The failure of some components may have a much larger effect
than the failure of others. In particular, a node’s effect may de-
pend not only on how it is connected to the network but also
on its intrinsic properties. By contrast, everything else being
the same, the probability of transmitting the flu tends to vary
little from person to person. Like nonadditivity and nonlocal-
ity, disproportional impact has important ramifications for the
modeling, detection, and control of cascading dynamics.

Modeling cascades
To detect and control cascades, one must first develop a suit-
able mathematical representation of them. That task turns out
to be easier said than done. Although the self-amplifying na-
ture of cascades is relatively straightforward to model, nonad-
ditivity, nonlocality, and disproportional impact are not. Ac-

cordingly, the compromise between being simple enough to be
amenable to analysis and being comprehensive enough to rep-
resent reality is hard to come by for models of cascading dy-
namics. Significant progress has been made, nevertheless, by
tailoring models to the research question at hand. 

Models may be detailed, simplified, or abstract. To use the
power grid as an example,4 a detailed model would employ the
most realistic, causal representation of the system. A simplified
model would involve conscientious approximations, such as
the DC approximation for power flows. An abstract model
might not directly account for the physics of power flows but
focus instead on implications.

First we review examples from one important class of cas-
cade models: those that capture the dynamics of cascades with-
out necessarily being derived from the dynamics of the actual
network.
‣ Avalanche models. Inspired by the Bak-Tang-Wiesenfeld
sandpile model, avalanche models treat each node much like
a pile of grains, as illustrated in figure 2a. One by one, grains
are randomly added to the piles, until one pile exceeds a
threshold height and topples. That pile’s grains are redistrib-
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FIGURE 1. EXAMPLES OF CASCADES. (a) On 2 July 1996, a cascade of power line failures (red bars) left the western North American grid
fragmented into five islands (colored areas) and more than 2 million customers without power. Here, the numbers indicate the chronological
order of the cascading events, including the triggering and remedial failures. (Adapted from North American Electric Reliability Council, 
1996 System Disturbances: Review of Selected 1996 Electric System Disturbances in North America, August 2002.) (b) The loss of the black-tailed
prairie dog in the central US upset the habitat in a way that triggered a decline (red arrows) in several animal species. (Adapted from B. J.
Bergstrom et al., Conserv. Lett. 7, 131, 2014.) (c) Cross-national social influences—estimated based on Facebook friendship connections—
triggered a social cascade that fueled the 2010–12 Arab Spring protests. (Adapted from ref. 3, C. D. Brummitt, G. Barnett, R. M. D’Souza.) 
(d) In this neuronal avalanche—a propagating cascade of bursts of neuronal activity in the brain—the colors indicate the time since the 
initial burst. (Adapted from J. M. Palva et al., Proc. Natl. Acad. Sci. USA 110, 3585, 2013.)
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uted to neighboring piles, possibly setting off a cascade in
which multiple nodes topple.

Avalanche models account for nonadditivity, and if the top-
pling thresholds are heterogeneous across the network, they
can capture disproportional impact. But like most models in
which nodes communicate their state changes only with their
immediate neighbors, it does not allow for nonlocality.5,6

‣ Percolation-related models. These are models that can be
formulated as a percolation problem. Because the end question
is usually whether the set of affected nodes forms a large-scale,
connected cluster in the network, the models themselves are
ultimately purely structural. 

One example, illustrated in figure 2b, is the threshold model
developed by Mark Granovetter.7 In that model, a node changes
state when some threshold fraction of its neighbors has
changed. The threshold model is often used to study how be-
havioral changes spread in social systems. Solutions of this
model for randomly connected networks8 show, for example,
that increasing the heterogeneity of the distribution of connec-
tions per node makes a system less susceptible to large-scale
cascades. By contrast, increasing the heterogeneity of the thresh-

olds makes the system more susceptible. Although percolation-
related models do not account for disproportional impact or
nonlocality, they do capture nonadditivity.
‣ Statistical models. Some models eschew details of a network’s
dynamics and structure and instead use simulated or histori-
cal data to describe the expected number of affected nodes
in each generation of a time-discretized cascade. Prime exam-
ples are branching-process models,9 illustrated in figure 2c. In
their simplest form, branching-process models are character-
ized by a parameter λ, which represents the average number
of offspring failures for each parent failure in the preceding
generation. Because statistical models specify neither the
causal relations between parent and offspring failures nor the
identity of the elements involved in the cascade, they do not
take a stand on any of the properties unique to cascades. 
‣ Flow-redistribution models. Traffic networks, power grids,
metabolic systems, and many other real networks exhibiting
cascades are flow networks. In models of flow networks, the
failure of a node or connection results in its flow being redis-
tributed to other nodes and connections in the network, as 
illustrated in figure 2d. Other components may then reach 

FIGURE 2. CASCADE MODELS. (a) In an avalanche model, grains of sand are randomly added to a network’s nodes until one node reaches
a threshold, at which point it topples and its grains are redistributed to its neighbors. Here the threshold is four, and the central node is set
to topple. That triggering event causes other nodes to topple during later stages of the cascade, as indicated. (b) In the threshold model, an
agent changes state only when an assigned threshold fraction of its neighbors has changed state. Here the assigned thresholds are shown
next to each node, and the stages indicate the order in which the various nodes change states. (c) In branching-process models, a 
failure has some probability of spreading from a parent to its offspring. Shown here are cases where the number of new failures in each 
generation (gen) is smaller than (blue), equal to (red), and larger than (green) the critical number for cascade growth. (Adapted from T. P. 
Vogels, K. Rajan, L. F. Abbott, Annu. Rev. Neurosci. 28, 357, 2005.) (d) In a flow-redistribution model, the inactivation of one connection, 
indicated with an “x,” increases (red) or decreases (blue) the flow through other connections. The flow increases may cause additional failures
and flow redistributions.
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capacity and fail—completely or partially, depending on
whether the capacity is a hard or soft constraint. The response
may be immediate, or it may have a time delay. In any case, the
original failure may lead to a cascade of further flow redistri-
butions and failures. 

One simple flow-redistribution model, the overload model,
assumes that the flow between any two nodes is transmitted
along the shortest path connecting them.10 Despite its simplic-
ity, the model captures all three salient properties of cascades:
nonadditivity, nonlocality, and disproportional impact. It also
reproduces the tendency of networks to be robust to perturba-
tions of low-flow components but fragile to perturbations of
high-flow components. 

Deriving cascade dynamics
Some mathematical models of cascades are derived directly
from representations of a network’s dynamics and reproduce
cascades as special manifestations of this dynamics without 
the need for ad hoc assumptions. Among them are dynamical-
systems models derived from the dynamical equations de-
scribing the state of the network, and typically expressed in the
form of a large set of coupled ordinary differential equations.
In a food-web network, those equations could be the consumer-
resource equations; in a network of power-grid generators,
they could be the swing equations that follow from Newton’s
second law.

These equations describe systems that are nonlinear, dissi-
pative, and multistable, with some of their stable states, or at-
tractors, representing desired states and others representing un-
desired states. A cascade is then interpreted as the process
illustrated in figure 3. Here, a perturbation drives the system
from the attraction basin of a desired state to the basin of an
undesired state, to which the system then evolves.11 Inciden-
tally, such a continuous description shows that it is a simplifi-
cation to think of a cascading failure as a process in which one
failure leads to another. Instead, the continuous change in the
full state of all variables is what drags the system along a path
of successive failures.

One benefit of dynamical-systems models is that in addition
to immediately accounting for all defining properties of the

cascading dynamics, they allow the study of numerous im-
plications. For example, in ecological-extinction cas-

cades subject to a sequence of perturbations, the
outcome hinges strongly on the per turbations’
order and timing. Depending on the perturba-

tion scheduling, a cascade triggered by the sup-
pression of one species often can be enhanced, in-

hibited, or completely mitigated by the deliberate
suppression of other species.12

Another approach to capturing realistic dynamics is
agent-based modeling, in which nodes are represented as

agents that respond to neighboring agents according to pre-
defined rules. Such models are simulated at the individual
rather than the aggregate level and allow fairly realistic repre-
sentations of systems that are too complex to represent with
closed-form equations.13 They can be used to study cascading
processes in various contexts, ranging from power engineering
and molecular biology to economics.

Early detection and prediction
To mount an effective response to a cascade event, one must ei-
ther predict it before it starts or detect it soon thereafter. One may
be interested in a binary answer (whether or not a cascade is
likely), a continuous answer (the probability of a cascade as a func-
tion of cascade size), or a full description of the cascade trajec-
tory, including the identities of the affected network components.

In principle, determining when a network component
changes state is straightforward, but predicting the system-
wide impact of such a change is difficult. A cascade can be pre-
dicted if the network’s state and governing dynamics are
known and the system can be accurately simulated. To that
end, properly validated models, such as TRELSS, the Transmis-
sion Reliability Evaluation of Large-Scale Systems for power-
network reliability,4 can be simulated in tandem with the ob-
servation of the real system to predict a possible cascade given
a detected perturbation. Because cascades involve a complex
sequence of dependent changes, however, simulations are often
sensitive to model details and uncertainties in the estimation
of state variables—much as predictions of the behavior of a
double-pendulum can vary wildly as a result of small uncer-
tainties. (See Adilson Motter and David Campbell, PHYSICS
TODAY, May 2013, page 27.)

Another possible strategy for cascade prediction is to use
data from previous events under similar conditions to statisti-
cally infer outcomes. A first step is to analyze data to identify
features that are strongly correlated with certain cascade out-
comes. For example, on Facebook, Twitter, and Twitter’s Chinese-
language counterpart, Weibo, the activity of key users and the
temporal and structural properties of early sharing events are
strong predictors of the outbreak of large information-sharing
cascades.14 Logistic regression, neural networks, support vec-
tor machines, and other machine learning techniques that sys-
tematically account for multiple correlations are often used to
identify features and predict outcomes. A difficulty, however,
is that large cascades—precisely those most important to pre-
dict—are rare events for which statistical data tend to be inher-
ently limited. A crucial factor in the real-time detection of cas-
cades is the time required to collect and process data about the

FIGURE 3. IN A DYNAMICAL-SYSTEMS MODEL, a cascade is 
initiated when a perturbation (red arrow) drives a network away
from its normal-state attractor and into the basin of an attractor 
representing a cascade state. Therefore, in this representation a 
cascade is not a process in which one discrete event leads to another
but rather a continuous change in the full state of all variables.
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network, which has to be smaller than the time scale for the
propagation of the cascade. 

It is often conceptually instructive to model simulated rather
than empirical data in order to develop an intuition for which
features give rise to cascades. For example, for the overload
model, simulations predict that cascading failures are more
likely to be triggered by highly central nodes through which
many different network paths are channeled.10 Sensitivity analy-
sis can be useful for investigating real-world variants of such
predictions, as in the Icelandic power network shown in figure 4.

In the study of models, a more complete characterization of
the conditions leading to a cascade is also possible in many cases.
In the threshold model on random networks,8 for example, a
single node can trigger a large-scale cascade only if the node is
connected to a percolating cluster of early adopters, which ac-
tivate whenever any one of their neighbors activates. If the net-
work is sparsely connected, the cascade will also include a
large-scale portion of non-early adopters. 

Cascade control
A primary ambition in the study of cascades is to be able to
control them—to put in motion a desirable cascade or stop a
detrimental one. It’s convenient to think about control in terms
of the manipulation of risk, where risk is the probability that a
cascade will occur times the cost incurred if it does. This con-
cept can be useful in scenarios where, say, suppressing small,
frequent cascades inadvertently increases the frequency of
large, rare ones. The counterpart to risk applicable to desirable

cascades is expected utility—the probability of a cas-
cade times its potential payoff. Cost and utility functions

can be expressed more generally as probability times size,
for a properly defined notion of cascade size. The extent to

which one can control a cascade depends in part on whether
the goal is to inhibit it or promote it, on whether the system is
engineered or natural, and on how effectively the individual
network elements can be actuated. 

In social systems, a conceptual starting point for launching
a successful cascade is the influentials hypothesis—the notion
that some individuals are significantly more effective in exert-
ing social influence than others.15 The underlying idea is that
even though influentials may have a higher threshold for join-
ing the cascade, once they do join they are more likely to cause
others to join. That makes them ideal targets for early adoption.
The concept is similar in spirit to disproportional impact, where
influence may depend as much on network position as on rep-
utation and other aspects of intrinsic fitness. 

A competing hypothesis is that there are no influentials and
that the ability to trigger cascades depends mainly on the over-
all structure of the network, including patterns of connections
between early adopters.15 Some studies focused on maximizing
the spread of influence suggest the existence of influentials,16

but the extent to which those influentials wield influence remains
a topic of research. Though it may go without saying, another
control parameter in social-network cascades is the appeal of
the information, technology, or behavior that’s being shared.

In engineered networks, the most direct ways to prevent
cascading failure are to make the system’s components and struc-
ture resilient and to incorporate system controls that proac-
tively reduce risk as conditions change. (See the article by Scott
Backhaus and Michael Chertkov, PHYSICS TODAY, May 2013,
page 42.) In practice, however, no engineering effort can elim-
inate the possibility of occasional failures and hence of cascad-
ing failures in a large, complex network. Redesigning the sys-
tem isn’t always an option—especially in resource-limited
networks. There is therefore interest in what could be perceived
as the most ambitious form of cascade control: reining in un-
foreseen or unavoidable cascades after they have been triggered.

Consider a power-grid disturbance that upsets the balance
between demand and capacity at certain stations and lines. To
rebalance the system in real time and prevent the propagation
of the disturbance, the control actions might include rerouting
power flows, shutting off power to parts of the grid, and dis-
patching power generation at other parts. (Myriad factors, includ-
ing time scales for failure and response, other instabilities in the
grid, the cost of power generation, and the prioritization of certain
users such as hospitals, will influence those control decisions.)

−0.90 −0.45 0 0.45

PERCENTAGE OF TOTAL REAL POWER FLOW

FIGURE 4. IN THIS MAP OF THE ICELANDIC POWER GRID,

the color of each load node (circles) indicates the percentage
change in the aggregated power flow over all power lines
when that node’s demand increases by 1%, relative to the
total power generated in the network. (Squares represent
power generators.) To keep supply and demand in balance,
power demand is decreased uniformly across all other load
nodes. Sensitivity maps such as this one may be able to help
identify critical components affecting cascade dynamics.
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There are basically two types of approaches to minimizing
power loss and hence the possibility of a large cascade. Cen-
tralized algorithms, which require state information for the en-
tire system, can, in principle, deliver a globally optimal solution.
Decentralized algorithms, which rely on local state informa-
tion, can generate locally optimal solutions that are compu-
tationally less expensive. The scale of the system largely de-
termines which approach is most appropriate. Smart-grid
technologies, such as real-time pricing and large-scale use of
smart appliances, will introduce new ways to control not only
supply and delivery but also demand and may prove crucial
to increasing the market penetration of renewable energy from
wind, solar, and other intermittent sources.

Dynamical-systems models form a particularly insightful
context in which to study the post-triggering control of cas-
cades. In those models, the triggering of the cascade is associ-
ated with the event that brings the system outside the attraction
basin of the desired attractor. The goal is to steer the trajectory
back into the desired basin of attraction. 

That adjustment can be done by perturbing either the sys-
tem’s variables to bring the state to the desired basin or its pa-
rameters to bring the desired basin to the state. (See figure 5.)
The game of billiards provides an analogy: Perturbing the sys-
tem variables is akin to pocketing the balls by striking them with
a cue; perturbing the parameters is like tilting the table itself. The
challenge is that constraints on feasible interventions limit the
accessible portions of the state and parameter spaces. And the
determination of the global structure of the basin boundaries,
which would be required in simple control approaches, is com-
putationally impossible in large, high-dimensional networks.

Two recently developed approaches have overcome those
challenges. One locates the basin of the target attractor without
any a priori information about its location.11 The other manip-
ulates the height of the basin boundary along the least action
path to the desired attractor to induce a bifurcation that elim-
inates the undesired attractor without changing the stability of
other states in the system.17 Within the dynamical-systems frame-

work, one can, in principle, go beyond suppressing or enhanc-
ing cascades and instead control the entire cascade trajectory.

A world of possibilities
Essentially every problem discussed here is still a work in
progress. Ongoing research includes efforts to discover new
mechanisms underlying cascades, find relations between net-
work structure and cascade dynamics, identify tradeoffs be-
tween resilience to frequent cascades and resilience to large
ones, establish effective control schemes in the presence of un-
certainty, characterize the trajectories of different cascades, iden-
tify common features across different systems, experimentally
validate hypotheses, and develop new applications that lever-
age beneficial cascades. Other topics of pressing interest include
postcascade dynamics and the nontrivial matter of restoring
systems after a cascading failure.

The above applies not only to systems modeled as a single
network with a single type of node and a single type of inter-
action, but also to many networks composed of multiple types
of nodes and interactions. In social networks, for instance, in-
dividuals may be distinguished by gender, age, profession, and
other characteristics; their interactions may be physical or vir-
tual, personal or professional. 

To give another example, a city can be regarded as a net-
work that includes infrastructural, social, economic, and bio-
physical layers that interact with one another. Although such
a system can be represented as a single network, it is sometimes
convenient to separate the different layers and regard the sys-
tem as a network of interacting networks. (Such networks are
also referred to as multilayer and multirelational networks,
among other terms.) Interacting networks raise additional ques-
tions about cascades, including whether networks are more
susceptible to cascades when coupled to other networks than
they would be when assumed to operate in isolation.

Take the example of two networks of N nodes each. Cou-
pling between the two raises the possibility that a cascade ini-
tiated in one network will propagate to the other, such that the

FIGURE 5. CASCADE CONTROL. A system on the verge of cascading—that is, one that’s been nudged into the basin of an undesired
attractor—can be nudged back toward a target attractor by perturbing either (a) the state (red dot) to move the system toward the
target basin or (b) parameters to shift the boundary between the desired and undesired basins of attraction (dashed line). Lighter 
colors represent deeper points in the attraction basins, and contours are lines of equal depth. (Adapted from refs. 11 and 17.)



cascade grows larger than it would in either one of the net-
works alone. That does not mean, of course, that the cascade
will be any larger than it would be in a single network of 2N
nodes. The coupling between networks may also reduce the
risk of cascades, as suggested by model systems consisting of
similar subnetworks coupled to one another.6 The same is ex-
pected in scenarios where one network stabilizes the other, as
is the case for regulatory and control networks. 

Interdependent networks, a special class of interacting net-
works, are another instructive example. In the simplest of such
networks, each node must be connected to a working node from
a different network in order to function. Interdependence may
make cascades and percolation transitions either more or less
abrupt depending on the details of the model and network struc-
ture.18 The effect of interactions between networks is far from
obvious, likely system specific, and yet to be fully understood.

Cascades are unique in that they can produce global effects
in the absence of global actions: A network is disrupted not by
a disturbance itself but by the chain of events a disturbance
puts in motion. As has been the case with the study of other
spreading phenomena, research on cascades has traditionally
focused more on their analysis than on their prediction and de-
tection. Yet recent advances in early detection combined with
ongoing advances in cascade control are now creating the pos-
sibility of real-time manipulation of cascades even after they’re
triggered. We believe that pressing problems in disciplines as
diverse as materials science, biomedicine, finance, and social
science will directly benefit from future advances in the rapidly
developing multidisciplinary field of network cascades.
The authors acknowledge support from NSF.
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