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Fluid instabilities that mimic animal growth

Irmgard Bischofberger and Sidney R. Nagel

In many biological systems, structures all grow at the same rate. That phenomenon of
proportionate growth has now been observed in a nonequilibrium physical system.

he natural world is full of patterns that spontaneously
emerge from featureless environments. From micro-
scopic snowflakes to large-scale river networks, pat-
tern formation leads to systems of extraordinary intri-
cacy and beauty.

Instabilities are central to pattern formation; com-
plex patterns emerge when a system is driven to an unstable
state in which small perturbations evolve to create large-scale
structures. However, the details of the evolution following the
instability onset can vary widely. They depend on the system’s
intrinsic symmetries or the growth conditions set by the envi-
ronment; the result is a variety of patterns, diverse in both their
organization and their length scales. Understanding how a sys-
tem spontaneously selects its overall structure as it is driven
out of equilibrium remains a major scientific challenge.

Crucial to many advancements in the field was the discov-
ery of the viscous fingering instability, which occurs when a
fluid displaces another of higher viscosity either in a porous
medium or in a narrow gap. A convenient model environment
for precision studies of interfacial pattern formation is the
Hele-Shaw cell —two parallel plates separated by a thin gap of
thickness b, in which the fluids are injected through a hole in
the center of one of the plates. In that system, the encroaching
low-viscosity fluid forms fingers that grow and then split if
they become too wide. (See also PHYSICS TODAY, October 2012,
page 15.)

The viscous fingering instability has received enormous
attention since 1958 when Philip Saffman and G. I. Taylor
showed that both the onset of the instability and the subse-
quent branching of growing fingers are governed by the size
scale A, of the fastest-growing perturbation. That most unstable
scale is determined by a competition between the interfacial
tension o, which stabilizes small perturbations, and stresses
that drive the instability. Those stresses depend on the inter-
facial velocity V and the viscosity difference An=rn,, —
between the displaced outer fluid and the invading inner fluid.
Thus, A.=ntbNo/AnV. The scale A, sets the characteristic width
of the first generation of fingers and the condition for tip split-
ting, which occurs once a finger has grown to a width of 2A..

An independent length scale

In collaboration with Radha Ramachandran, we have discov-
ered that the above single-scale description does not fully char-
acterize the patterns that emerge in the Hele-Shaw cell. It fails
to account for some of the global features that evolve after the
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fingers have developed. As illustrated by panel a of the figure,
systems with identical A, can evince a rich variety of shapes
with distinct global characteristics. The images in the top row
of the panel show patterns formed when a water—glycerol
mixture displaces a more viscous oil at a constant A. of
2.8+ 0.2 mm.

The unambiguously distinct patterns are created by varying
the viscosity ratio 1,,/1,..- They all include an interior region in
which the outer fluid is completely displaced. As the viscosity
ratio increases, the inner circular region grows and the finger
length shrinks; the less viscous fluid more efficiently displaces
its more viscous partner. Remarkably, since the finger length is
controlled by 1,,/1,. and the width by A_, the fingers’ two di-
mensions are decoupled from each other.

Removing surface tension stabilizes interface

The decrease in the relative finger length with increasing
Nin/Mowe 15 @ general feature of the fingering instability. As the
bottom row in panel a of the figure shows, the decrease is also
observed when the two fluids are miscible—in other words,
when the interfacial tension o approaches zero. In that case, the
most unstable scale is minimal, but it is not strictly zero as the
explicit formula above would indicate; instead, in the small-o
limit, A, is set by b, the gap thickness between the two plates.

The vanishing of o corresponds to the elimination of the
only stabilizing term in the system. Counterintuitively, the
elimination of interfacial tension stabilizes the fingering pat-
tern. This is illustrated in the comparison between panel a’s
upper and lower rows, which show, respectively, pairs of pat-
terns formed at significant o and nearly zero o for five viscosity
ratios. For each pair, the stable central region is larger and the
finger length smaller in miscible fluids with tiny o. Indeed, for
the largest 1,,/1..., the system is completely stable—no finger-
ing is observed.

It turns out that the key to the unexpected stability lies in
the three-dimensional flows that exist in the miscible fluids. In-
stead of fully displacing the outer fluid, the inner fluid pene-
trates as a tongue into the outer fluid. The lower row of panel
a shows evidence for the formation of such tongues—the vary-
ing shades of gray in the fingering patterns indicate more or
less incomplete displacements of the outer fluid.

The subtle balance of stable and unstable growth in miscible
fluids leads to a second unexpected phenomenon. When the
viscosity ratio is close to the boundary of the stable regime, the
instability is suppressed after the first generation of fingers has



STRIKING FORMS CAN EMERGE when a low-viscosity fluid displaces one of higher viscosity.
(a) The patterns here were created by two immiscible fluids (top row) and two miscible fluids
(bottom row) for different viscosity ratios: from left to right, 0.0026, 0.025, 0.073, 0.24, and 0.37.
As the ratio increases, the fingers become progressively shorter and an inner circular region of
complete displacement becomes ever bigger. Over the entire range of ratios, the fingers are

shorter for the miscible fluids; evidently, the elimination of interfacial tension stabilizes the pattern.

(b) When miscible fluids are used and their viscosity ratio is high enough, a novel proportionate
growth pattern results. The top row shows two snapshots of the growth for a system in which the
viscosity ratio is 0.185. The sections in the squares are zoomed to give the bottom images, which
have the same outer radius. Those zoomed images are essentially indistinguishable; evidently,

the fingers grow in direct proportion to the overall pattern radius. The scale bars correspond

to4 cm.

developed. That is, no further splitting is observed even as the
finger width becomes much larger than 21, the value at which
one would expect a finger to branch. A fundamentally different
type of growth is observed, one that is distinct from the com-
monly found growth morphologies.

Proportionate growth

The patterns we have observed at the edge of stability in mis-
cible fluids grow without tip splitting or side-branch forma-
tion, another common instability mode. Instead, the structures
that form grow at nearly the same rate in all directions; thus
the overall growth does not change shape (see panel b of the
figure). That type of growth, in which a pattern is composed of
distinguishable structures all growing at the same rate, is called
proportionate growth. It had not previously been empirically
observed in a physical system, though it had been seen in a
cellular automaton devised by Tridib Sadhu and Deepak Dhar
(see the additional resources). Other than that, proportionate
growth has been observed only in the biological world, where
it is common. A spectacular example is the growth of mam-
mals; as a baby mammal grows, different body parts grow at
nearly the same rate and thus in direct proportion to each other.
Biologists have long pondered how the body organizes that
synchronized growth.

In the viscous fingering instability, proportionate growth
occurs because the system becomes unstable only once, to pro-
duce distinguishable structures, but then turns off the instabil-
ity mechanism so that no further generations can develop. That
mechanism is different from what happens in the Sadhu-Dhar
cellular automaton, which follows unchanging preset rules.
Now that we have found a physical system with proportionate

growth, we and other physicists can access that type of growth
experimentally under controlled conditions.

Nature rarely closes the book on any complex phenomenon,
and careful investigation of new regimes is often repaid with
surprising results. The work presented here shows that even
for a well-studied problem such as viscous fingering, experi-
ments can reveal novel and counterintuitive behavior. Future
experiments and simulations coupled with new theoretical un-
derstandings will clarify any relevance of viscous fingering to
proportionate growth in biology and the importance of new
length scales for controlling technological applications in
which fluid displacements are essential.
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